


2 CROSSTALK The Journal of Defense Software Engineering May 2006

21st Century Processes for Acquiring 21st Century
Software-Intensive Systems of Systems
This article summarizes characteristics of 21st century software-intensive
systems of systems and indicates some of the major problems associated
with using the traditional acquisition processes on them, while introduc-
ing new acquisition development processes to address 21st century soft-
ware-intensive systems of systems.
by Dr. Barry Boehm and Jo Ann Lane

Tackling the Cost Challenges of System of Systems
This article provides guidelines to decision makers performing
high-level analysis of system of systems costs in order to pursue the
most affordable solution to meet the mission needs.
by Arlene F. Minkiewicz

Building Multilevel Secure Web Services-Based
Components for the Global Information Grid
This article discusses using multiple independent levels of security for the
Department of Defense’s Global Information Grid and provides exam-
ples where it has been successfully used.
by Dr. Dylan McNamee, CDR Scott Heller, and Dave Huff

Practical Performance-Based Earned Value 
This update on Performance-Based Earned Value (PBEV) provides guid-
ance on practical ways to implement two of the four PBEV principles.
by Paul J. Solomon

Lessons Learned Using Agile Methods on Large
Defense Contracts 
What is working, and what isn’t working, when applying agile software
development on large U.S. government defense projects? This article
answers these questions by employing scenarios based on actual project
situations that occurred in 2005 and shares the latest lessons learned
from these scenarios.
by Paul E. McMahon

4

10

15

20

25

****** ******

Cover Design by
Kent Bingham.

3

9
19
24
30
31

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher 

Coming Events

Web Sites

Call for Articles

Visit CrossTalk at the SSTC

BackTalk

TTransfransforming:orming: Business,Business, SecuritySecurity,,WWarfightingarfighting
CrossTalk

76 SMXG
CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Bob Zwitch

Joe Jarzombek

Jeff Scwalb

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 29.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

1 May, Track 2

1 May, Track 1

4 May, Track 3

2 May, Track 5

1 May, Track 2

Additional art
services provided by 
Janna Jensen, M.P.C.

jensendesigns@aol.com 

 



May 2006 www.stsc.hill.af.mil 3

From the Sponsor

The 2006 Systems and Software Technology Conference and this month’s issue of
CrossTalk have as their theme “Transforming: Business, Security, Warfighting.”

Transformation is not just the current buzzword: Many industries and the military have
realized that through the investment of transformation efforts, they can strategically pos-
ture themselves for the future.

A.K. Cebrowski, the Director of the Office of Transformation for the Office of the
Secretary of Defense, stated, “Over the long term, our security and prospects for peace

and stability for much of the rest of the world depend on the success of our transformation.” Today,
our military faces an ever-growing number of emerging security threats. The conflicts are varied –
spread out over the globe, continuous, and longer lasting. We are moving from threat-based to capa-
bilities-based planning. The focus is on effects required – not the number of targets destroyed.

Benjamin Franklin stated, “When you’re finished changing, you’re finished.” Clearly, a poignant
thought that we must always continue to change, develop, and improve. Transformation is a con-
tinuous process, not an end point. It has conceptual, cultural, organizational, and technological
dimensions. Being transformational implies that we must continually adapt to a changing environ-
ment and that we be innovative, adaptive, and responsive. We have to be easy to do business with.
We have to be effective and efficient.

Transformation requires that leaders be prepared for change, and that we invest in new tech-
nologies. Leaders have to encourage new ways of thinking; sometimes this includes using old capa-
bilities in new ways. Gen. Richard B. Myers, former chairman of the Joint Chiefs of Staff, said, “In
today’s world, there ought to be a premium for people who are thinking, innovative, and are willing
to take appropriate risks. If you don’t try, and you stay locked in the doctrine that brought you there,
you’re going to fail.”

The featured articles in this issue of CrossTalk develop many valuable concepts to transform
our business practices. These articles certainly offer concepts for more agile business practices, and
better cost and performance results: Great information to help us all strategically posture ourselves
for the future.

Transformation: A Continuous Process

Bob Zwitch
Warner Robins Air Logistics Center Co-Sponsor

From the Publisher

As Mr. Zwitch discusses, the Department of Defense (DoD) continues to transform
to ensure our enduring success. In addition to finding improved ways of doing

things, transformation requires educating the members of the DoD about those
improvements. CrossTalk’s parent organization, the Software Technology Support
Center, was established for just this purpose. As part of our endeavor to educate soft-
ware practitioners on methods to better acquire and develop software, the Systems and
Software Technology Conference (SSTC) and CrossTalk were established. Once a

year, SSTC and CrossTalk join forces to share improvements in person and in print. All the
articles in this month’s issue will be discussed in presentations at SSTC 2006.

The articles in this month’s issue include an update to the spiral model that addresses acquir-
ing systems of systems; a discussion on the special cost challenges that systems of systems cre-
ate; one approach for better securing the Global Information Grid; examples for using
Performance-Based Earned Value; and tips to help large projects better use agile software devel-
opment methods. I hope you enjoy this month’s issue of CrossTalk, and hope you enjoy the
presentations at SSTC.

Education Is Key for Successful Transformation

Elizabeth Starrett
Associate Publisher



Between now and 2025, the ability of
organizations and their products, sys-

tems, and services to compete, adapt, and
survive will depend increasingly on soft-
ware and the ability to integrate related
software-intensive systems into systems of
systems (SOS). As is being seen in current
products (automobiles, aircraft, radios)
and services (financial, communication,
defense), software provides both compet-
itive differentiation and rapid adaptability
to competitive change. It facilitates rapid
tailoring of products and services to dif-
ferent market sectors and rapid and flexi-
ble supply chain management.

The resulting software-intensive sys-
tems and SOS face ever-increasing
demands to provide safe, secure, and reli-
able systems; provide competitive dis-
criminators in the marketplace; support
the coordination of multi-cultural global
enterprises; enable rapid adaptation to
change; and help people cope with com-
plex masses of data and information.
These demands will cause major differ-
ences in the processes currently used to
define, design, develop, deploy, and
evolve a diverse variety of software-inten-
sive systems and software-intensive SOS
(SISOS).

SISOS Trends and Their
Influence on Systems and
Software Engineering Processes
Today’s trend towards larger, software-
intensive systems and SOS often require
much more complex systems and software
engineering processes and better integra-
tion of these processes across the systems
engineering and software engineering
organizations. This section provides an
overview of key SISOS historical trends,
features, development organizations, and
potential pitfalls.

Historical Evolution of Processes
Historically (and even recently for some
forms of agile methods), systems and soft-
ware development processes and maturity
models were recipes for standalone
stovepipe systems with high risks of inade-
quate interoperability with other stovepipe
systems. Experience has shown that such
collections of stovepipe systems cause
unacceptable delays in service, uncoordi-
nated and conflicting plans, ineffective or
dangerous decisions, and an inability to
cope with rapid change.

During the 1990s and early 2000s,
standards such as the International
Organization for Standardization (ISO)/

International Electrotechnical Commis-
sion (IEC) 12207 [1] and ISO/IEC 15288
[2] began to emerge that situated systems
and software project processes within an
enterprise framework. Concurrently,
enterprise architectures such as IBM
Zachman Framework [3], Reference
Model for Open Distributed Processing
(RM-ODP), [4] and the U.S. Federal
Enterprise Architecture Framework [5],
have been developing and evolving along
with a number of commercial Enterprise
Resource Planning (ERP) packages.

These frameworks and support pack-
ages are making it possible for organiza-
tions to reinvent themselves around trans-
formational, network-centric SOS. As dis-
cussed in [6], these are necessary SISOS
that have equally tremendous opportunities
for success and risks of failure. Examples
of successes are Federal Express; Wal-
Mart; and the U.S. Command, Control,
Intelligence, Surveillance, and
Reconnaissance (C2ISR) system in Iraq.
Examples of failures are the Confirm trav-
el reservation system; K-Mart; and the U.S.
Advanced Automation System for air traf-
fic control. ERP packages have been the
source of many successes and many fail-
ures, implying the need for considerable
risk/opportunity assessment before com-
mitting to an ERP-based solution.

Key SISOS Features
There are many definitions of SOS [7]. For
this article, the distinguishing features of
SOS are not only that they integrate multi-
ple, independently developed systems, but
also that they are very large, dynamically
evolving, and unprecedented with emer-
gent requirements and behaviors, and
complex socio-technical issues to address.

4 CROSSTALK The Journal of Defense Software Engineering May 2006

21st Century Processes for Acquiring 21st Century
Software-Intensive Systems of Systems

Dr. Barry Boehm and Jo Ann Lane
University of Southern California

Our experiences in helping to define, acquire, develop, and assess 21st century software-
intensive systems of systems (SISOS) have taught us that traditional 20th century
acquisition and development processes do not work well on such systems. This article
summarizes the characteristics of such systems, and indicates the major problem areas
in using traditional processes on them. We also present new processes that we and oth-
ers have been developing, applying, and evolving to address 21st century SISOS. These
include extensions to the risk-driven spiral model to cover broad (many systems), deep
(many supplier levels), and long (many increments) acquisitions needing rapid fielding,
high assurance, adaptability to high-change traffic, and complex interactions with evolv-
ing commercial off-the-shelf products, legacy systems, and external systems.

Transforming: Business, Security,Warfighting

Characteristic 

edocfosenilnoillim001-01eziS

Number of external interfaces 30-300
 

Number of coopetitive suppliers 20-200

Depth of supplier hierarchy 6-12 levels

Number of coordination groups 20-200

Range of Values 

Table 1: Software-Intensive Systems of Systems (SISOS) Solution Spaces

Monday, 1 May 2006
Track 2: 8:00 – 11:15 a.m.

Ballroom B



21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems

May 2006 www.stsc.hill.af.mil 5

Table 1 provides some additional charac-
teristics of SISOS.

SISOS Development Organization
Trends and Issues
There is often a lead system integrator
who is responsible for developing SOS
architecture, identifying the suppliers and
vendors to provide various SOS compo-
nents, adapting the architecture to meet
evolving requirements and selected vendor
limitations or constraints, overseeing the
implementation efforts, and planning and
executing the SOS level integration and
test activities.

Keys to successful SOS development
are the ability to: achieve timely decisions
with a potentially diverse set of stakehold-
ers; quickly resolve conflicting needs; and
coordinate the activities of multiple ven-
dors who are currently working together to
provide capabilities for the SOS, but are
often competitors on other system devel-
opment efforts (sometimes referred to as
“coopetitive” relationships).

Potential SISOS Pitfalls
Our work in supporting SISOS develop-
ment programs has shown that using a risk-
driven spiral process with early attention to
SISOS risks and systems architecting meth-
ods can avoid many of the SISOS develop-
ment pitfalls [8]. A prioritized list of the
top 10 SISOS risks we have encountered
includes the following:
1. Acquisition management and staffing.
2. Requirements/architecture feasibility.
3. Achievable software schedules.
4. Supplier integration.
5. Adaptation to rapid change.
6. Systems and software quality factor

achievability.
7. Product integration and electronic

upgrade.
8. Commercial off-the-shelf (COTS) soft-

ware and reuse feasibility.
9. External interoperability.
10. Technology readiness.
Strategies for addressing these risks are
described in [8].

A Scalable Spiral Process
Model for 21st Century SISOS
In applying risk management to the set of
risks described above, the outlines of a
hybrid plan-driven/agile process for devel-
oping SISOS product architecture are
emerging. To keep SISOS developments
from becoming destabilized from large
amounts of change traffic, it is important to
organize development into plan-driven
increments in which the suppliers develop
to interface specifications that are kept sta-

ble by deferring changes, so that the systems
can plug and play at the end of the incre-
ment (nobody has yet figured out how to do
daily builds for these kinds of systems).

However, for the next increment to hit
the ground running, an extremely agile team
needs to be concurrently doing a continuous
market, competition, and technology watch;
change impact analysis; COTS refresh; and
renegotiation of the next increment’s prior-
itized content and the interfaces between the
suppliers’ next-increment interface specifi-
cations. This requires new approaches not
only to process management, but also to
staffing and contracting. The following sec-
tions elaborate on this emerging process
architecture and its challenges.

21st Century SISOS Development
and Evolution Modes
In the next 10 to 20 years, several 21st cen-
tury system and software development and

evolution modes will have emerged as the
most cost-effective ways to develop needed
capabilities in the context of the trends dis-
cussed earlier. The four most common
modes are likely to be exploratory develop-
ment of unprecedented capabilities, busi-
ness model-based user programming, hard-
ware and software product lines, and net-
work-centric SOS that will necessarily be
software-intensive [6]. There are new chal-
lenges for organizations in the process of
transforming themselves from collections
of weakly coordinated, vertically integrated
stovepipe systems into seamlessly interop-
erable network-centric SOS (NCSOS).

Architectures of these NCSOS are high-
ly software-intensive and need to be simulta-
neously robust, scalable, and evolvable in
flexible but controllable ways. The NCSOS
development projects need processes such
as the Internet spiral development process
[9], but due to competitive pressures, their

Spiral 2005 Process Model
The spiral model, first introduced in 1986, has continued to evolve to meet the needs
of our evolving development processes. The figure below shows the latest version of
the spiral model. Keys to this model are the use of success-critical stakeholder win-
win negotiations to determine the system’s objectives, constraints, and primary solu-
tion alternatives; and the life cycle anchor points that are the common system/software
stakeholder commitment points for concurrent engineering. (These often replace the
more traditional sequential Department of Defense system development milestone
reviews such as System Requirements Review, Preliminary Design Review, and Initial
Operational Capability.) The life cycle anchor points include:
• Life Cycle Objectives (LCO): The stakeholders’ commitment to support system

architecting.
• Life Cycle Architecture/Development Increments ( ____DIN

LCA
): The stakeholders’

commitment to support the full life-cycle development.
• Incremental Operational Capabilities/Development Increments ( ____DIN

IOC  
): The

stakeholders’ commitment to support operations.
The 2005 spiral framework provides a common frame of reference for the process
views that we will subsequently describe.

Cumulative Cost, Time, Product, and Process Detail (Risk-Driven)



Transforming: Business, Security,Warfighting

6 CROSSTALK The Journal of Defense Software Engineering May 2006

processes must generally operate on much
tighter timescales than were involved in the
early evolution of the Internet.

Evolutionary development, business
model-based user programming, and hard-
ware and software product line develop-
ment as described in [10] are key trends for
the development and evolution of SISOS
components. In the following sections, we
describe an emerging, scalable spiral
process model for developing and evolving
21st century product lines and NCSOS.

Overview of the Scalable Spiral
Process Model 
Complex systems and complex processes
require multiple views to understand vari-
ous aspects of the system and its develop-
ment processes. And these multiple views

require some type of anchor points to help
relate one view to another. Our first view
begins with the spiral model view shown in
the sidebar (see page 5).

Based on our experiences in adapting
the spiral model to the development of
SISOS representative of the 21st century
trends discussed earlier, we have been con-
verging on a scalable spiral process model.
This model has shown in partial implemen-
tation to date to scale well from small e-ser-
vices applications to super-large defense
SOS and multi-enterprise supply chain
management systems. The model contains
familiar elements, but organizes them in
ways that involve new approaches to enter-
prise organization, contracting, incentives,
staffing, education, and career develop-
ment. Figure 1 shows a single increment of

the development and evolution portion of
the model. It assumes that the organization
has developed the following:
• A best-effort definition of the system’s

steady-state capability.
• An incremental sequence of prioritized

capabilities culminating in the steady-
state capability.

• A feasibility rationale providing suffi-
cient feasibility evidence for each incre-
ment and the overall system. This evi-
dence should show that system archi-
tecture will support the incremental
capabilities, that each increment can be
developed within its available budget
and schedule, and that the series of
increments create a satisfactory return
on investment for the organization and
mutually satisfactory outcomes for the
success-critical stakeholders.
As seen in Figure 1, the model is orga-

nized to simultaneously address conflicting
21st century challenges of rapid change
and high assurance of dependability. It also
addresses the need for rapid fielding of
incremental capabilities with a minimum of
rework, and the other major 21st century
trends involving integration of systems and
software engineering, COTS components,
legacy systems, globalization, and user
value considerations [10].

The need to deliver high-assurance
incremental capabilities on short, fixed
schedules means that each increment needs
to be kept as stable as possible. This is par-
ticularly the case for a large SOS with deep
supplier hierarchies (often six to 12 levels)
in which a high level of rebaselining traffic
can easily lead to chaos. In keeping with the
use of the spiral model as a risk-driven
process model generator, the risks of
destabilizing the development process
make this portion of the project into a
waterfall-like, build-to-specification subset
of the spiral model activities. The need for
high assurance of each increment also
makes it cost-effective to invest in a team
of appropriately skilled personnel to con-
tinuously verify and validate the increment
as it is being developed.

However, the previous discussion on
deferring change does not imply deferring
change impact analysis, change negotiation,
and rebaselining until the beginning of the
next increment. With a single development
team and rapid rates of change, this would
require a team optimized to develop stable
plans and specifications to spend much of
the next increment’s scarce calendar time
performing tasks better suited to agile
teams. Instead, Figure 1 shows how the spi-
ral project would organize itself as follows:
• A plan-driven team transforms a build-

Orient with respect to stakeholders

priorities, feasibility, and risks.

• Risk/Opportunity analysis.

• Business case/mission analysis.

• Prototypes, models, simulations.

Operate as current system

Accept new system

Act on plans and specifications.

• Keep development stabilized.

• Change impact analysis,

 preparation for next cycle

 (mini observe, orient, decide,

 act loop).

Decide on next-cycle capabilities,

architecture upgrades, and plans.

• Stable specifications, commerical

 off-the-shelf upgrades.

• Development, integration, verification and

 validation, risk-management plans.

• Feasibility rationale.

Life Cycle Architecture Milestone for Cycle

Observe new/updated objectives,

constraints and alternatives.

• Usage monitoring.

• Competition, technology,

 marketplace intelligence,

 surveillance, and

 reconnaisaince.

Figure 2: Observe, Orient, Decide, Act (OODA) Loop

Figure 1: The Scalable Spiral Process Model – Increment Activities



21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems

May 2006 www.stsc.hill.af.mil 7

to DI1 life-cycle architecture (LCA)
package of validated specifications and
plans (using one or more spiral cycles or
intermediate builds) into a completed
initial operational capability deliverable.

• Meanwhile, an independent verification
and validation (IV&V) team continually
verifies and validates the plan-driven
increment under development.

• Meanwhile, an agile team adjusts and
rebaselines the build-to specifications
and plans for the next increment (DI2)
for hand-off to the plan-driven team.

The process in Figure 1 is then applied
similarly to the subsequent cycles in the
spiral chart.

The appropriate metaphor for address-
ing rapid change is not a build-to-specifica-
tion metaphor or a purchasing-agent
metaphor, but is an adaptive C2ISR
metaphor as shown in Figure 2. It involves
an agile team performing the first three
activities of the C2ISR Observe, Orient,
Decide, Act (OODA) loop for the next
increments, while the plan-driven develop-
ment team is performing the Act activity
for the current increment. Observing involves
monitoring changes in relevant technology
and COTS products in the competitive
marketplace, in external interoperating sys-
tems, and in the environment; and moni-
toring progress on the current increment to
identify slowdowns and likely scope defer-
rals. Orienting involves performing change
impact analysis, risk analysis, and trade-off
analysis to assess candidate rebaselining
options for upcoming increments. Deciding
involves stakeholder renegotiation of the
content of upcoming increments, architec-
ture rebaselining, and the degree of COTS
upgrading to be done to prepare for the
next increment. It also involves updating
the future increments’ feasibility rationales
to ensure that renegotiated scopes and
solutions can be achieved within budget
and schedule. The LCA milestone at the
bottom of Figure 2 corresponds with the
DIN+1 Rebaselined LCA increment in
Figure 1.

A successful rebaseline means that the
plan-driven development team can hit the
ground running at the beginning of the
Act phase of developing the next incre-
ment, and the agile team can hit the
ground running on rebaselining defini-
tions of the increments beyond. Figure 3
shows how this three-team cycle (lean,
plan-driven, stabilized developers; thor-
ough IV&V people; and agile, proactive
rebaseline people) plays out from one
increment to the next, including the early
product line or SOS inception and elabo-
ration phases with their pass-fail, life-cycle
objectives and LCA exit milestones. The

shaded activities in Figure 3 are the same
set of activities that are shown in detail in
Figure 1. Note that OO&D in each agile
rebaselining increment stands for observe,
orient, and decide, and not object-oriented
design. The (A) below it stands for the Act
portion of the OODA loop for the cur-
rent increment. Note also that, as much as
possible, usage feedback from the previ-
ous increment is not allowed to destabilize
the current increment, but is fed into the
definition of the following increment. Of
course, some level of mission-critical
updates will need to be fed into the cur-
rent increment, but only when the risk of
not doing so is greater than the risk of
destabilizing the current increment.

As with command and control, the
OO&D rebaselining portion of the project
is not a sequential waterfall process.
Instead, it is a risk-driven set of concurrent
prototyping, analysis, and stakeholder rene-
gotiation activities that lead to a best-possi-
ble redefinition of plans and specifications
to be used by the stabilized development
team for the next increment. For people
familiar with the Department of Defense
5000 series of acquisition milestones,
Figure 4 provides a mapping of them onto
the Spiral 2005 anchor points.

Acquisition as C2ISR Versus Purchasing
The 20th century purchasing agent or con-
tracts manager is most comfortable with a

Figure 4: Spiral 2005 Anchor Points in Relation to Department of Defense 5000 Milestones

Figure 3: The Scalable Spiral Process Model: Life Cycle View



Transforming: Business, Security,Warfighting

8 CROSSTALK The Journal of Defense Software Engineering May 2006

fixed procurement to a set of pre-specified
requirements; selection of the least-cost,
technically adequate supplier; and a mini-
mum of bothersome requirements
changes. Many of our current acquisition
institutions – regulations, specifications,
standards, contract types, award fee struc-
tures, reviews and audits – are optimized
around this procurement model.

Such institutions have been the bane
of many projects attempting to deliver
successful systems in a world of emerg-
ing requirements and rapid change. The
project people may put together good
technical and management strategies to
do concurrent problem and solution def-
inition, teambuilding, and mutual-learn-
ing prototypes and options analysis.
Then they find that their progress pay-
ments and award fees involve early deliv-
ery of complete functional and perfor-
mance specifications. Given the choice
between following their original strate-
gies and getting paid, they proceed to
marry themselves in haste to a set of pre-
mature requirements then find them-
selves repenting at leisure for the rest of
the project (if any leisure time is avail-
able).

Build-to-specification contract mecha-
nisms still have their place, but it is just for
the stabilized increment development. If
such mechanisms are applied to the agile
rebaselining teams, then frustration and
chaos ensues. What is needed for the three-
team approach are separate contracting
mechanisms for the functions, under an
overall contract structure, enabling them to
be synchronized and rebalanced across the
life cycle. Also needed are source-selection
mechanisms more likely to choose the
most competent supplier, using such
approaches as competitive exercises to de-
velop representative system artifacts using
the people, products, processes, methods,
and tools in the offeror’s proposal.

A good transitional role model is the
Command Center Processing and Display-
Replacement (CCPDS-R) project
described in [11]. Its U.S. Air Force cus-
tomer and TRW contractor (selected using
a competitive exercise such as the one
described earlier) reinterpreted the tradi-
tional defense regulations, specifications,
and standards. They held a preliminary
design review: This was not a PowerPoint
show at month four, but a fully validated
architecture and demonstration of the
working, high-risk user interface and net-
working capabilities at month 14. The
resulting system delivery, including more
than one million lines of software source
code, exceeded customer expectations
within budget and schedule.

Other good acquisition approaches are
the Scandinavian Participatory Design
approach [12], Checkland’s Soft Systems
Methodology [13], lean acquisition and
development processes [14], and Shared
Destiny-related contracting mechanisms
and award fee structures [15, 16]. These all
reflect the treatment of acquisition using a
C2ISR metaphor rather than a purchasing-
agent metaphor.

Model Experience to Date
and Conclusions
The scalable spiral model has been evolv-
ing with experience and has not yet been
fully implemented on a large, completed
project. However, its principles and prac-
tices build on many successful project
experiences and unsuccessful project
lessons learned. Specific examples of
projects that have successfully balanced
agile and plan-driven methods are the
agile-based ThoughtWorks lease manage-
ment project [17] and the plan-based
CCPDS-R project [11]. More generally, J.
Collins’ book, “Good to Great” [18]
identifies 11 companies with exceptional
performance records as having success-
fully transformed themselves into having
both a strong ethic of entrepreneurship
and a strong culture of discipline.

The use of concurrent IV&V teams
has been successfully practiced and
evolved since the 1970s [19]. More
recent successful continuous IV&V
practices include the continuous build
practices at Microsoft [20] and in agile
methods [21]. Proactive investments in
agile next-increment teams are success-
fully used in exploiting disruptive tech-
nologies at companies such as Hewlett
Packard (HP), Seagate, and Johnson and
Johnson [22]; and in practicing open
innovation in companies such as HP,
IBM, Intel, and Lucent [23]. Successful
use of the anchor point milestones and
evolutionary development using the
Rational Unified Process [16] and the
WinWin Spiral model [24] has been
experienced on numerous small, medi-
um, and large software projects and on
hardware projects at such companies as
Xerox and Johnson and Johnson. Partial
implementations of the model are also
providing improvement and are being
evolved on the large-scale U.S. Army
Future Combat Systems program, large
space systems, and commercial supply
chain systems [8].

Experience to date indicates that the
three teams’ activities are not as neatly
orthogonal as they look in Figures 1 and 3.
Feedback on development shortfalls from
the IV&V team either requires a response

from the development team (early fixes
will be less disruptive and expensive than
later fixes), or deferral to a later increment,
adding work and coordination by the agile
team. The agile team’s analysis and proto-
types addressing how to accommodate
changes and deferred capabilities need to
draw on the experience and expertise of
the plan-driven development team, requir-
ing some additional development team
resources and calendar time. Additional
challenges arise if different versions of
each increment are going to be deployed
in different ways into different environ-
ments. The model has sufficient degrees
of freedom to address such challenges,
but they need to be planned within the
project’s schedule and budget.

In working with our commercial and
aerospace affiliates on how they can best
evolve to succeed as 21st century enter-
prises, we have found several 20th centu-
ry process-related institutions that need
to be significantly rethought and
reworked to contribute to success. Two
key leading areas for SISOS development
that need rethinking are acquisition prac-
tices and human relations [10]. Other
institutions that also need rethinking and
rework are continuous process improve-
ment (repeatability and optimization
around the past versus adaptability and
optimization around the future), supplier
management (adversarial win-lose versus
team-oriented win-win), internal research
and development strategies (core capabil-
ity research plus external technology
experimentation versus full-spectrum
self-invention), and enterprise integration
(not-invented-here stovepipes versus
enterprise-wide learning and sharing).u

References
1. International Organization for Stan-

dardization. Information Technology –
Software Life Cycle Processes.
ISO/IEC 12207: 1995. Geneva,
Switzerland: ISO, 1995.

2. International Organization for Stan-
dardization. Systems Engineering –
System Life Cycle Processes. ISO/
IEC 15288: 2002. Geneva, Switz-
erland: ISO, 2002.

3. Zachman, J. “A Framework for Infor-
mation Systems Architecture.” IBM
Systems Journal 26.3 (1987): 276-292.

4. Putman, J. Architecting With RM-
ODP. Prentice Hall, 2001.

5. Federal Chief Information Officer
Council. A Practical Guide to Federal
Enterprise Architecture Vers. 1.0.
Washington, D.C.: FCIO, Feb. 2001.

6. Harned, D., and J. Lundquist. “What
Transformation Means for the



21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems

May 2006 www.stsc.hill.af.mil 9

Defense Industry.” The McKinsey
Quarterly 3 Nov. 2003: 57-63.

7. Lane, J., and R. Valerdi. “Synthesizing
System-of-Systems Concepts for Use in
Cost Estimation.” IEEE SMC, 2005.

8. Boehm, B., A.W. Brown, V. Basili, and
R. Turner. “Spiral Acquisition of
Software-Intensive Systems of Sys-
tems.” CrossTalk May 2004: 4-9
<www.stsc.hi l l .af.mil/crosstalk/
2004/05/0405boehm.html>.

9. U.S. Air Force-Scientific Advisory
Board. Information Architectures
Study. Washington, D.C.: U.S. Air
Force, 1994.

10. Boehm, B. “Some Future Trends and
Implications for Systems and Software
Engineering Processes.” USC-CSE-
TR-2005-507. Los Angeles, CA: Uni-
versity of Southern California, 2005.

11. Royce, W.E. Software Project Man-
agement. Addison-Wesley, 1998.

12. Ehn, Pelle. Work-Oriented Design of
Computer Artifacts. Lawrence Earl-
baum Assoc., 1990.

13. Checkland, P. Systems Thinking,
Systems Practice. 2nd ed. Wiley, 1999.

14. Womack, J., and D. Jones. Lean
Thinking: Banish Waste and Create
Wealth in Your Corporation. Simon &
Schuster, 1996.

15. Deck, M., M. Strom, and K. Schwartz.
“The Emerging Model of Co-

Development.” Research Technology
Management Dec. 2001.

16. Rational, Inc. Driving Better Business
With Better Software Economics.
Rational Software Corp., 2001.

17. Elssamadisy, A., and G. Schalliol.
Recognizing and Responding to ‘Bad
Smells’ in Extreme Programming.
Proc. of the 24th International
Conference on Software Engineering,
Orlando, FL, May 2002: 617-622.

18. Collins, J. Good to Great. Harper
Collins, 2001.

19. Rubey, J.R., J.A. Dana, and P.W. Biché.
“Quantitative Aspects of Software
Validation.” IEEE Transactions on
Software Engineering June 1975: 150-
155.

20. Cusumano, M., and R. Selby. Microsoft
Secrets. Harper Collins, 1996.

21. Beck, K. Extreme Programming
Explained. Addison-Wesley, 1999.

22. Christensen, C. The Innovator’s
Dilemma (Harper Business Essentials).
Harper Collins, 2000.

23. Chesbrough, H. Open Innovation:
The New Imperative for Creating and
Profiting from Technology. Harvard
Business School Press, 2003.

24. Boehm, B., A. Egyed, J. Kwan, D. Port,
A. Shah, and R. Madachy. “Using the
WinWin Spiral Model: A Case Study.”
IEEE Computer July 1998: 33-44.

About the Authors
Barry Boehm, Ph.D., is
the TRW professor of
software engineering and
director of the Center
for Software Engineering
at the University of

Southern California. He was previously
in technical and management positions
at General Dynamics, Rand Corp., TRW,
and the Defense Advanced Research
Projects Agency, where he managed the
acquisition of more than $1 billion
worth of advanced information technol-
ogy systems. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach to
software management and requirements
negotiation.

University of Southern California
Center for Software Engineering
941 W 37th PL
SAL RM 328
Los Angeles, CA 90089-0781
E-mail: boehm@usc.edu

Jo Ann Lane is currently
a research assistant sup-
porting software engi-
neering and system-of-
systems research activi-
ties at the University of

Southern California’s Center for
Software Engineering. In this capacity,
she is currently working on a cost model
to estimate the effort associated with
system-of-systems architecture defini-
tion and integration. Prior to this, she
was a key technical member of Science
Applications International Corporation’s
Software and Systems Integration Group.
She has over 28 years of experience in
the development of software-intensive
systems.

University of Southern California
Center for Software Engineering
941 W 37th PL
SAL Room 328
Los Angeles, CA 90089-0781
E-mail: jolane@usc.edu

COMING EVENTS

June 17-21
33rd Annual International Symposium

on Computer Architecture (ISCA 2006)

Boston, MA
www.ece.neu.edu/conf/isca2006

June 19-22
CISC 2006 Combat Identification

Systems Conference
Orlando, FL

www.usasymposium.com/cisc

June 25-30
18th Annual FIRST (Forum of Incident

Response and Security Teams)
Conference on Computer Security and

Incident Handling
Baltimore, MD

www.first.org/conference/2006

June 26-29
SERP 2006

International Conference on Software
Engineering Research and Practice

Las Vegas, NV
http://people.cs.und.edu/~reza/

SERP06.html

June 26-30
2006 Better Software
Conference and Expo

Las Vegas, NV
www.sqe.com/bettersoftwareconf.org

June 27-29
CMSE Europe

Components for Military and Space
Electronics Workshop and Conference

Portsmouth, U.K.
www.cmse-eur.com

April 16-19, 2007
2007 Systems and Software 

Technology Conference 

Salt Lake City, UT
www.sstc-online.org



10 CROSSTALK The Journal of Defense Software Engineering May 2006

Tackling the Cost Challenges
of System of Systems

The Department of Defense and its contractors are currently facing unprecedented chal-
lenges in planning projects involving groups of systems integrated into one large system
of systems (SOS). These challenges are intensified by the fact that these systems tend to
be heavily software-dependent. Often planners must decide which configuration of plat-
forms best meets mission needs with respect to affordability, performance, and risk in the
very early stages of a project from top-level requirements. This article presents research
of the cost issues associated with delivery of SOS capabilities. It starts with a discus-
sion on what an SOS is and areas where SOS projects vary from typical system devel-
opment and deployment. New and expanded contractor roles and activities are present-
ed, highlighting how these drive cost differences from traditional system projects.
Guidelines are provided for performing high-level analysis of SOS costs to enable deci-
sion makers to perform trade-offs between various configurations in order to pursue the
most affordable solution that will meet mission needs.

Arlene F. Minkiewicz
PRICE Systems

The Department of Defense (DoD)
has migrated from a platform-based

acquisition strategy to one focused on
delivering capabilities. Instead of deliver-
ing a fighter aircraft or an unmanned air
vehicle, contractors are now being asked
to deliver the right collection of hardware
and software to meet specific wartime
challenges. This means that much of the
burden associated with conceptualizing,
architecting, integrating, implementing,
and deploying complex capabilities into
the field has shifted from desks in the
Pentagon to desks at Lockheed Martin,
Boeing, Rockwell, and other large aero-
space and defense contractors.

In “The Army’s Future Combat
Systems’ [FCS] Features, Risks and
Alternatives,” the Government Account-
ing Office states the challenge as:

…14 major weapons systems or
platforms have to be designed and
integrated simultaneously and with-
in strict size and weight limitations
in less time than is typically taken to
develop, demonstrate, and field a
single system. At least 53 technolo-
gies that are considered critical to
achieving critical performance capa-
bilities will need to be matured and
integrated into the system of sys-
tems. And the development,
demonstration, and production of
as many as 157 complementary sys-
tems will need to be synchronized
with FCS content and schedule. [1]

The planning, management, and exe-
cution of such projects will require

changes in the way organizations do busi-
ness. This article reports on ongoing
research into the cost challenges associat-
ed with planning and executing a system
of systems (SOS) project. Because of the
relatively immature nature of this acquisi-
tion strategy, there is not nearly enough
hard data to establish statistically signifi-
cant cost-estimating relationships. The
conclusions drawn to date are based on
what we know about the cost of system
engineering and project management
activities in more traditional component
system projects augmented with research
on the added factors that drive complex-
ities at the SOS level.

The article begins with a discussion
of what an SOS is and how projects that
deliver SOS differ from those projects
delivering stand-alone systems.
Following this is a discussion of the new
and expanded roles and activities associ-
ated with SOS that highlight increased
involvement of system engineering
resources. The focus then shifts to cost
drivers for delivering the SOS capability
that ties together and optimizes contri-
butions from the many component sys-
tems. The article concludes with some
guidelines for using these cost drivers to
perform top-level analysis and trade-offs
focused on delivering the most afford-
able solution that will satisfy mission
needs.

Related Research
Extensive research has been conducted
on many aspects of SOS by the DoD, aca-
demic institutions, and industry. Earlier
research focused mainly on requirements,

architecture, test and evaluation, and pro-
ject management [2, 3, 4, 5, 6, 7, 8]. As
time goes on and the industry gets a bet-
ter handle on the technological and man-
agement complexities of SOS delivery,
the research expands from a focus on the
right way to solve the problem to a focus
on the right way to solve the problem
affordably. In the forefront of this cost-
focused research is the University of
Southern California’s Center for Software
Engineering [9], the Defense Acquisition
University [10], Carnegie Mellon’s Software
Engineering Institute [11], and Cranfield
University [12].

What Is an SOS?
An SOS is a configuration of component
systems that are independently useful but
synergistically superior when acting in
concert. In other words, it represents a
collection of systems whose capabilities,
when acting together, are greater than the
sum of the capabilities of each system
acting alone.

According to Mair [13], an SOS must
have most, if not all, of the following
characteristics:
• Operational independence of compo-

nent systems.
• Managerial independence of compo-

nent systems.
• Geographical distribution.
• Emergent behavior.
• Evolutionary development processes.
For the purposes of this research, this
definition has been expanded to explicit-
ly state that there be a network-centric
focus that enables these systems to com-
municate effectively and efficiently.

Monday, 1 May 2006
Track 1: 3:55 – 4:40 p.m.

Ballroom A



Tackling the Cost Challenges of System of Systems

May 2006 www.stsc.hill.af.mil 11

Today, there are many platforms
deployed throughout the battlefield with
limited means of communication. This
becomes increasingly problematic as mul-
tiple services are deployed on a single
mission as there is no consistent means
for the Army to communicate with the
Navy or the Navy to communicate with
the Air Force. Inconsistent and unpre-
dictable means of communication across
the battlefield often results in unaccept-
able time from detection of a threat to
engagement. This can ultimately endan-
ger the lives of our service men and
women.

One example of an SOS that the
Army is currently envisioning is the
Warfighter Information Network-
Tactical (WIN-T), which is a communica-
tion system designed for reliable, secure,
and seamless video, data, imagery, and
voice services to enable decisive, real-
time combat actions. This SOS promises
full, two-way communication between
platforms and across services, making it
possible for information to be shared and
processed in time to make a real differ-
ence in the outcome. The cloud is being
lifted from the battlefield!

How Different Are SOS
Projects?
How much different is a project intended
to deliver an SOS capability from a pro-
ject that delivers an individual platform
such as an aircraft or a submarine? Each
case presents a set of customer require-
ments that need to be elicited, under-
stood, and maintained. Based on these
requirements, a solution is crafted, imple-
mented, integrated, tested, verified,
deployed, and maintained. At this level,
the two projects are similar in many ways.
Dig a little deeper and differences begin
to emerge. The differences fall into sev-
eral categories: acquisition strategy, soft-
ware, hardware, and overall complexity

The SOS acquisition strategy is capa-
bility-based rather than platform-based.
For example, the customer presents a
contractor with a set of capabilities to
satisfy particular battlefield requirements.
The contractor then needs to determine
the right mix of platforms, the sources of
those platforms, where existing technolo-
gy is adequate, and where invention is
required. Once those questions are
answered, the contractor must decide
how best to integrate all the pieces to sat-
isfy the initial requirements. This capabil-
ity-based strategy leads to a project with
many diverse stakeholders. Besides the
contractor selected as the lead system

integrator (LSI), other stakeholders that
may be involved include representatives
from multiple services, Defense
Advanced Research Projects Agency,
prime contractor(s) responsible for sup-
plying component systems as well as their
subcontractors. Each of these stakehold-
ers brings to the table different motiva-
tions, priorities, values, and business
practices – each brings new people man-
agement issues to the project.

Software is an important part of most
projects delivered to DoD customers. In
addition to satisfying the requirements
necessary to function independently, each
of the component systems needs to sup-
port the interoperability required to func-
tion as a part of the entire SOS solution.
Much of this interoperability will be sup-
plied through the software resident in the
component systems. This requirement
for interoperability dictates that well-
specified and applied communication
protocols are a key success factor when
deploying an SOS. Standards are crucial,
especially for the software interfaces.
Additionally, because of the need to
deliver large amounts of capability in
shorter and shorter timeframes, the
importance of commercial off-the-shelf
(COTS) software in SOS projects contin-
ues to grow.

With platform-based acquisitions, the
customer generally has a fairly complete
understanding of the requirements early
on in the project with a limited amount
of requirements growth once the project
commences. Because of the large scale
and long-term nature of capability-based
acquisitions, the requirements tend to
emerge over time with changes in gov-
ernments, policies, and world situations.
Because requirements are emergent,
planning and execution of both hardware
and software contributions to the SOS
project are impacted.

SOS projects are also affected by the
fact that the hardware components being
used are of varying ages and technolo-
gies. In some cases, an existing hardware
platform is being modified or upgraded
to meet increased needs of operating in
an SOS environment, while in other
instances brand new equipment with
state-of-the-art technologies is being
developed. SOS project teams need to
deal with components that span the spec-
trum from the high-tech, but relatively
untested to the low-tech, tried-and-true
technologies and equipment.

Basically, a project to deliver an SOS
capability is similar in nature to a project
intended to deliver a specific platform
except that overall project complexity

may be increased substantially. These
complexities grow from capability-based
acquisition strategies, increased number
of stakeholders, increased overall cost
(and the corresponding increased politi-
cal pressure), emergent requirements,
interoperability, and equipment in all
stages from infancy to near retirement.

New and Expanded Roles and
Activities
Understanding the manifestation of
these increased complexities on a project
is the first step to determining how the
planning and control of an SOS project
differs from that of a project that deliv-
ers one of the component systems. One
of the biggest and most obvious differ-
ences in the project team is the existence
of an LSI. The LSI is the contractor
tasked with the delivery of the SOS that
will deliver the capabilities the DoD cus-
tomer is looking for. The LSI can be
thought of as the super prime or the prime
of prime contractors. He or she is respon-
sible for managing all the other primes
and contractors and ultimately for field-
ing the required capabilities. The main
areas of focus for the LSI include:
• Requirements analysis for the SOS.
• Design of SOS architecture.
• Evaluation, selection, and acquisition

of component systems.
• Integration and test of the SOS.
• Modeling and simulation.
• Risk analysis, avoidance, and mitiga-

tion.
• Overall program management for the

SOS.
One of the primary jobs of the LSI is
completing the system engineering tasks
at the SOS level.

Focus on System Engineering
The following is according to the
“Encyclopedia Britannica”:

… system engineering is a tech-
nique of using knowledge from
various branches of engineering
and science to introduce techno-
logical innovations into the plan-
ning and development stages of
systems. Systems engineering is
not as much a branch of engineer-
ing as it is a technique for applying
knowledge from other branches
of engineering and disciplines of
science in an effective combina-
tion. [14]

System engineering as a discipline
first emerged during World War II as



Transforming: Business, Security,Warfighting

12 CROSSTALK The Journal of Defense Software Engineering May 2006

technology improvements collided with
the need for more complex systems on
the battlefield. As systems grew in com-
plexity, it became apparent that it was
necessary for there to be an engineering
presence well versed in many engineering
and science disciplines to lend an under-
standing of the entire problem a system
needed to solve. To quote Admiral Grace
Hopper, “Life was simple before World
War II. After that, we had systems [15].”

With this top-level view, the system
engineers were able to grasp how best to
optimize emerging technologies to
address the specific complexities of a
problem. Where an electrical engineer
would concoct a solution focused on the
latest electronic devices and a software
engineer would develop the best software
solution, the system engineer knows
enough about both disciplines to craft a
solution that gets the best overall value
from technology. Additionally, the system
engineer has the proper understanding of
the entire system to perform validation
and verification upon completion, ensur-
ing that all component pieces work
together as required.

Today, a new level of complexity has
been added with the emerging need for
SOS, and once again the diverse expertise
of the system engineers is required to
overcome this complexity. System engi-
neers need to comprehend the big picture
problem(s) whose solution is to be pro-
vided by the SOS. They need to break
these requirements down into the hard-
ware platforms and software pieces that
best deliver the desired capability, and
they need to have proper insight into the
development, production, and deploy-
ment of the component systems to
ensure not only that they will meet their
independent requirements, but also that
they will be designed and implemented to
properly satisfy the interoperability and
interface requirements of the SOS. It is
the task of the system engineers to verify
and validate that the component systems,
when acting in concert with other com-
ponent systems, do indeed deliver the
necessary capabilities.

Cost Considerations of
SOS Projects
An SOS is a collection of existing,
upgraded, and new systems that are
required to work together to accomplish
specific objectives. Clearly the costs of
developing and acquiring component sys-
tems is one important cost consideration,
but since estimating system costs is a fair-
ly mature discipline, this article focuses

on the additional costs associated with
the delivery of capabilities made possible
when a configuration of such systems
works as a system.

Mastering the cost questions in an
SOS project first requires establishing a
link between the increased complexities
and the participation of system engineers
in the project. A traditional parametric
estimating methodology for hardware or
software systems relies on a quantifica-
tion of the size and complexity of the
system being developed. Size is driven by
weight for hardware and source lines of
code or function points for software.
Project, process, and organizational fac-
tors drive complexity. Assigning a size
and complexity to an SOS is a bit trickier.
Traditional size measures alone are not
adequate for estimating the size of sys-

tem engineering tasks and with many par-
ticipating organizations, the process and
organizational factors can vary substan-
tially within the project team.

Tricky or not, being able to properly
size the SOS part of a project is crucial
to successfully determining what it will
cost and how long it will take to deliver.
It is also a crucial step in being able to
make trade-offs in order to deliver a
solution that not only meets require-
ments, but also satisfies affordability
constraints. As with all estimating, the
challenge in sizing an SOS is being able
to translate what is known early on in the
project into information that represents
useful project characteristics as the pro-
ject evolves.

Toward this end, our research indi-
cates that the number of unique interface
protocols and the number of different
component systems are the two best fac-
tors for determining the size of the SOS

effort. In an SOS project, it is the LSI’s
job to define and design the infrastruc-
ture that will facilitate communication
among the many component systems.
The number of unique interface proto-
cols is clearly a good start for determin-
ing problem space size. Augmentation of
this number with the number of compo-
nent systems that will be designed for or
adapted to operate within this infrastruc-
ture provides an even better proxy for the
size of the solution. This conclusion is
consistent with the research done at the
University of Southern California’s
Center for Software Engineering on the
Constructive System of System
Integration Model [9].

The number of unique interface pro-
tocols drives the size of the integration
and test effort. Our experience is that the
effort for integration and test within a
typical system ranges between 5 percent
and 40 percent of the entire development
effort of the system as the number of
interfaces goes from few to many; this
effect would be exaggerated in an SOS as
complexity of the overall integration
problem is greater. As the number of
component systems increases, integration
efforts increase in a non-linear fashion as
a result of the diseconomy of scale
brought on by project complexity.
Additionally, the number of components
will influence management and oversight
costs in the form of added people and
communication issues.

Size, of course, is only part of the
puzzle. Multiple SOS within the same
size range will only fall into the same cost
range as a coincidence. For the sake of
this discussion, consider the simplistic
cost model that applies an exponent and
a coefficient to a project size. In this con-
text, the size is as described and the expo-
nent and coefficient are determined by
factors that determine project complexi-
ty. As such, it is necessary to assign rela-
tive complexity values to the various con-
figurations. There are many factors that
have a potential impact on complexity,
some that are obvious early on in the pro-
ject, and others that will emerge through-
out the project life cycle. The ones that
are available or predictable early on in the
project and that appear to have the most
significant impact on the amount of
effort required for the SOS tasks include
those in the following sections.

Number of Operational Scenarios
An operational scenario refers to a par-
ticular capability instance for some set of
the component systems of the SOS. For
example, the Coast Guard’s Integrated

“Mastering the cost
questions in an SOS
project first requires
establishing a link

between the increased
complexities and the

participation of
system engineers
in the project.”



Tackling the Cost Challenges of System of Systems

May 2006 www.stsc.hill.af.mil 13

Deepwater System needs to include
capability that can react to a terrorist
threat, a person lost at sea, or a drug-
smuggling operation. The number of
operational scenarios impacts the coeffi-
cient in the cost equation discussed ear-
lier as additional scenarios result in more
time for requirements, design, and mod-
eling and simulation. Depending on the
similarities of the scenarios, the impacts
to these activity’s costs should represent
increases between 10 percent and 50
percent.

Required Level for Acceptance of
Key Performance Parameters
Key performance parameters associated
with an SOS include things like detection
effectiveness, survivability, and lethality.
This factor could have substantial impact
on both the coefficient and the exponent
in the simple cost model mentioned ear-
lier. System engineering activities associ-
ated with the SOS could double or triple,
or more as the detection effectiveness
expectations move from available tech-
nology to state of the art. Use of imma-
ture technology on the Joint Tactical
Radio System Program was cited as one
of the main reasons for a $458 million
development cost increase [16].

Number of Suppliers and
Stakeholders
The number of players involved in an
SOS project can increase the complexity
and cost significantly. On a typical system
project, people and communication
issues can increase the cost of project
management and oversight activities by
as much as 60 percent. This effect can
increase dramatically as the relatively
well-known confines of the typical sys-
tem are replaced with the much more
expansive and undefined constraints on
an SOS project.

Integration Complexity
Integration complexity is a quantification
of the amount of integration each com-
ponent is expected to require with the
rest of the SOS. An SOS that requires
highly complex integrations within and
among each of its component systems
could potentially see the integration and
test activity costs increase an order of
magnitude from an SOS where all of the
integrations are simple, well-defined
tasks.

Stability and Readiness of
Components
As mentioned earlier, the technical imma-
turity of components can substantially

impact system engineering tasks.
Additionally, immature components can
impact the overall schedule and cost of
the SOS, since integration and test activi-
ties for various capabilities will be delayed
until all required components are avail-
able. The WIN-T program was originally
planned to deliver technologies not
expected to mature until after production
started. Such a strategy is guaranteed to
lead to costly schedule delays.

Amount of COTS Capability
COTS components generally require
modification, integration, and test, as well
as compromise on SOS requirements.
When looking at the overall cost for an
SOS, off-the-shelf components should
decrease the cost compared to newly

developed components. From the per-
spective of the LSI, however, they repre-
sent an increase of system engineering
effort associated with requirements,
design and integration, and test. This cost
increase can be quite modest if the com-
ponents and vendors are chosen wisely,
but it could double the costs of these
activities if poor choices are made.

Affordable SOS
When crafting a solution to deliver an
SOS capability, there are things the LSI
can do to ensure that it not only meets all
performance requirements, but does so
within affordability constraints. All possi-
ble solutions should be focused on the
specified constraints for stated key per-
formance parameters (KPPs). No solu-
tion should be presented that does not
satisfy these constraints. Component sys-

tems that drive performance substantially
above specified performance in these
areas should be carefully scrutinized as
well. All possible solutions should first be
validated to ensure that they successfully
address all KPPs and support all opera-
tional scenarios.

Care should be taken to utilize as
many existing component systems as
possible rather than developing new
ones. When new component systems
must be developed to deliver some cur-
rently non-existing capability or degree of
performance, it is important to get the
most from the technology investment.
Attempts should be made to incorporate
as much capability as practical into the
new development to reduce the number
of different component systems.
Increases in complexity associated with
technology readiness and component sta-
bility may be offset by size decreases if
the number of required component sys-
tems can be reduced. At the same time,
care should be taken to ensure that
expectations for technology do not
exceed practical limits on innovation
imposed by schedule constraints on the
program.

Well-thought-out architecture with
simple communication protocols that
meet many different needs will reduce
the size of the SOS solution space.
Although there is an up-front investment
in getting the architectures right and
standardizing communication protocols,
the payoff is significant during delivery
of the initial operating concept and
throughout the life of the SOS.
Emerging requirements will result in the
addition of new component systems that
must communicate with existing compo-
nents.

The use of COTS hardware and soft-
ware is a practical and necessary
approach to accomplish the delivery of
SOS capabilities in required timeframes.
When possible, the same vendor should
be considered for multiple components,
parts, or software products. This reduces
the number of vendors involved in the
project, eases the effort to integrate
between components, and could possibly
result in favorable purchasing agreements
based on bulk. Integration complexity
can also be reduced through simple stan-
dards that are strictly enforced, effective
risk management techniques focused on
early identification and mitigation, and
ongoing integration efforts.

Conclusion
Today, SOS solutions are replacing the
existing post-World War II systems as

“Although there is an
upfront investment in

getting the architectures
right and standardizing

communication protocols,
the payoff is

significant during delivery
of the initial

operating concept
and throughout the life

of the SOS.”



Transforming: Business, Security,Warfighting

14 CROSSTALK The Journal of Defense Software Engineering May 2006

the next generation of complex solu-
tions supplied by contractors to the
DoD. SOS projects require contractors
to deliver capabilities rather than stand-
alone systems. Contractors are left to
decide on and acquire component sys-
tems, determine the best configuration
for these component systems to achieve
the required capabilities, and develop
the best plan for interoperability among
the component systems.

While there are some ways in which
an SOS project is similar to a project
that delivers a component system, there
are many ways in which the two types of
projects differ. Understanding these dif-
ferences and how they affect the cost
and effort associated with a project is
crucial to proper planning and execu-
tion of an SOS project. A crucial differ-
ence is the requirement for increased
involvement of system engineering
resources throughout the life cycle of
the SOS project. System engineers are
involved in requirements elicitation and
management, architecture decisions, test
and evaluation, verification and valida-
tion, and technical oversight for the
SOS project.

Cost drivers for an SOS fall into two
categories: those that define the size of
the system engineering tasks, and those
that drive the complexity of the engi-
neering and management tasks. Because
the notion of capability-based acquisi-
tions is still relatively immature, there is
not the preponderance of data required
to develop good, strong, cost-estimating
relationships for SOS project activities.
Despite this, it is possible – and neces-
sary – to begin estimating these projects
today by incorporating estimating knowl-
edge gained through years of system
development augmented with informa-
tion about the additional factors that
influence SOS project size and complex-
ities. Future directions for this research
involve collecting data from evolving
SOS projects as they reach milestones
and use this data to refine, update, or
replace cost-estimating relationships.u

References
1. Francis, Paul L. The Army’s Future

Combat System’s Features, Risks and
Alternatives. Testimony before the
Subcommittee on Tactical Air and
Land Forces. Committee on Armed
Services. House of Representatives,
GAO-04-635T 1 Apr. 2004 <www.
gao.gov/new.items/d04635t.pdf>.

2. Lamartin, Glenn. “The Role of T&E
in the Systems Engineering Process.”
National Defense Industrial Associa-

tion System Engineering Conference,
17 Aug. 2004 <www. acq.osd.mil/ds/
se/speeches.htm>.

3. Hooks, Ivy. “Managing Requirements
for a System of Systems.” Cross-
Talk Aug. 2004 <www.stsc.hill.
af.mil/crosstalk/2004/08/index.
html>.

4. Krone, Roger. “Managing a Complex
System-of-Systems.” President’s Com-
mission on Moon, Mars and Beyond,
4 May 2004 <www.govinfo.library.
unt.edu/moontomars/news/docs.
asp>.

5. Martin, James N. “Modeling and
Architecture Considerations for
Systems of Systems.” 2004 Systems
and Software Technology Conference,
Salt Lake City, UT, 21 Apr. 2004.

6. Carney, D., and P. Oberndorf. “Inte-
gration and Interoperability Models
for Systems of Systems.” 2004
Systems and Software Technology
Conference, Salt Lake City, UT, 1 Apr.
2004.

7. Crossley, William A. “System of
Systems: An Introduction of Purdue
University Schools of Engineering’s
Signature Area.” Engineering Systems
Symposium, MIT Engineering
Systems Division, Mar. 2004.

8. Conrow, Edmund H. “Risk Manage-
ment for Systems of Systems.”
CrossTalk Feb. 2005 <www.stsc.
hill.af.mil/crosstalk/2005/02/0502
conrow.html>.

9. Lane, Jo Ann. “Factors Influencing
System-of-Systems Architecting and
Integration Costs.” University of
Southern California’s Center for Soft-
ware Engineering <www.stevens-
tech.edu/cser/authors/46.pdf>.

10. Flowe, R., and M. Spurlock. “Systems
of Systems Research Project Over-
view.” Office of the Secretary of
Defense Program Analysis and
Evaluation, Mar. 2004 <http://acc.
dau.mil/simplify/ev_en.php >.

11. Zubrow, Dave. “System of Systems
Integration Cost Driver Research.”
37th Annual DoD Cost Analysis
Symposium, Feb. 2004.

12. Adcock, Rick. “Principles and
Practices of Systems Engineering.”
INCOSE UK Chapter Library, Nov.
2001 <www.incose.org.uk/library.
htm>.

13. Mair, M.W. “Architecting Principles
for System-of-Systems.” Systems
Engineer 1.4 (1998).

14. Encyclopedia Britannica Online
<www.britannica.com>.

15. Wikipedia <http://en.wikipedia.org/
wiki/system.engineering>.

16. Francis, Paul L. Defense Acquisitions,
Future Combat Systems Challenges
and Prospects for Success. Testimony
Before the Sub-committee on Airland.
Committee on Armed Services. U.S.
Senate, Government Accounting
Office, 16 Mar. 2005 <www.
gao.gov>.

About the Author

Arlene F. Minkiewicz is
chief scientist of the
Cost Research Depart-
ment at PRICE Systems.
She is responsible for the
research and analysis

necessary to keep the suite of PRICE
estimating products responsive to cur-
rent cost trends. In her 20-year tenure
with PRICE, Minkiewicz has researched
and developed the software cost estimat-
ing relationships that were the corner-
stone for PRICE’s commercial software
cost estimating model, ForeSight, and
invented the Cost Estimating Wizards
originally used in ForeSight that walk the
user through a series of high-level ques-
tions to produce a quick cost analysis. As
part of this effort she has invented a siz-
ing measurement paradigm for object-
oriented analysis and design that allows
estimators a more efficient and effective
way to estimate software size. She
recently received awards from the
International Society of Parametric
Analysts and the Society of Cost
Estimating and Analysis for her white
paper “The Real Cost of COTS.”
Minkiewicz contributed to a new para-
metric cost estimating book with the
Consortium for Advanced Manufactur-
ing International called “The Closed
Loop: Implementing Activity-Based
Planning and Budgeting,” and she fre-
quently publishes articles on software
estimation and measurement. She has
also been a contributing author for sev-
eral books on software measurement
and speaks frequently on this topic at
numerous conferences.

PRICE Systems
17000 Commerce PKWY STE A
Mt. Laurel, NJ 08054
Phone: (856) 608-7222
Fax: (856) 608-7247
E-mail: arlene.minkiewicz@

pricesystems.com



May 2006 www.stsc.hill.af.mil 15

Building Multilevel Secure Web Services-Based 
Components for the Global Information Grid

A consensus is growing that the Department of Defense’s vision of a future Global
Information Grid will be built using architecture that takes advantage of Web services
and uses standard Internet protocols, interchangeable components, and commercially
available hardware and software wherever possible. This article describes the features and
architecture of two systems: the Trusted Services Engine and the Multilevel Document
Collaboration Server, including their use of a separation kernel with multiple indepen-
dent levels of security, the design and assurance architecture of the cross-domain block-
access controller, and the composition architecture that extends the inter-level isolation
property from the block access controller outward through complex services.

CDR Scott Heller
Program Executive Office C4I and Space

The Global Information Grid (GIG) is
the overall architecture intended to

replace current stovepipe information sys-
tems. A consensus is growing that the
Department of Defense’s vision of this
future GIG will use an architecture that
takes advantage of Web services and uses
standard Internet protocols, interchange-
able components, and commercially avail-
able hardware and software wherever pos-
sible. By adopting modern standards-based
protocols, the GIG will enhance current
capability by enabling people and compo-
nents to work together dynamically with
integrated data.

Protocols such as Hypertext Transfer
Protocol, eXtensible Markup Language
(XML), Web-based Distributed Authoring
and Versioning (WebDAV), Really Simple
Syndication, and Lightweight Directory
Access Protocol allow the GIG to be made
of off-the-shelf components where
appropriate. Where custom components
are required, pervasive use of these proto-
cols preserves the component-based archi-
tecture of the GIG, thus protecting the
architecture from developing into a
stovepipe system.

Many of these components and pro-
tocols are mature and well understood,
but they were not designed with security
as the paramount consideration. Securing
the GIG is therefore a significant chal-
lenge. Particularly critical is securing its
cross-domain services. For these, the
GIG itself must somehow enforce sepa-
rate levels of security.

Today, physical isolation enforces sepa-
ration, though other technologies such as
cryptography may someday be used. Such
separation allows the use of commercial
components as single-level components
not responsible for cross-domain security

concerns. However, for the GIG to realize
its potential, some components must
enable secure cross-domain data access.
Clearly such components, while they must
conform to commercial protocols, must
be developed to higher than commercial
standards.

This article, which describes such a
component, has three main parts:
1. We describe the security and assurance

attributes required of a cross-domain
component of the GIG.

2. We describe the architecture and tech-
nologies we are using to achieve these
attributes in the Trusted Services
Engine (TSE), a network-enabled file
store with integrated read-down across
security domains.

3. We conclude by describing a system
built on the TSE, the Multilevel
Document Collaboration Server, to
enable cross-domain collaboration
within documents – an example of
using simple cross-domain compo-
nents to build more complex cross-

domain systems using only standard
protocols and APIs.

This article describes the features and
architecture of both systems:
• The design and assurance architecture of

the cross-domain block access controller
(BAC).

• The use of a Multiple Independent
Levels of Security (MILS) separation
kernel.

• The composition architecture that
extends the cross-domain isolation
property from the MILS separation
kernel to the BAC and outward
through complex services.

This article is focused toward a technical
audience familiar with Web services.

Assurance Requirements for
Cross-Domain GIG
Components
The nature and mission of the GIG
makes it a prime target for trained, well-
funded, and resourceful adversaries. The
threats posed by such adversaries, coupled
with the value of the information on the
GIG, require us to show that the GIG
components are robust in the face of
these threats. In particular, the greater
security risks associated with cross-
domain components – as compared to
single-level, commercial solutions –
require a correspondingly higher level of
trust. The process of generating and eval-
uating evidence of trustworthiness is
known as assurance, the most difficult
aspect of security engineering.

Two processes in the defense and intelli-
gence communities support each other to
generate assurance evidence for a GIG com-
ponent: evaluation and certification.
Evaluation is the process of validating securi-

Dave Huff
Fleet Numerical Meteorology and

Oceanography Center 

Dylan McNamee
Galois Connections, Inc.  

Thursday, 4 May 2006
Track 3: 9:55 – 10:40 a.m.

Ballroom C

“In particular, the greater
security risks associated

with cross-domain
components – as

compared to single-level,
commercial solutions –

require a correspondingly
higher level of trust.”



Transforming: Business, Security,Warfighting

16 CROSSTALK The Journal of Defense Software Engineering May 2006

ty claims for a particular component. For
example, the Common Criteria is an interna-
tional standard for specifying claims of sys-
tem security functionality and generating
assurance that these claims are satisfied. We
have determined that the cross-domain com-
ponents we are building will need to meet the
requirements for Common Criteria’s
Evaluation Assurance Level 6 or 7 [1].

Certification focuses on verifying that a
component can be securely deployed at a
particular site. Certification is best repre-
sented by such processes as Secret and
Below Interoperability, and Top Secret
and Below Interoperability. What these
processes have in common is a way to tai-
lor requirements for evaluation or certifi-
cation of the following:
• Sensitivity of the data that the compo-

nent handles.
• Severity of the threats it must with-

stand.
For example, under Director of Central
Intelligence Directive 6/3, a cross-
domain component that needs to
demonstrate high assurance with respect
to confidentiality must satisfy Protection
Level 4 or 5 assurance requirements.
Evaluating or certifying a component to
one of those standards requires an
extensive investment in time and
resources. But given the responsibilities
of a cross-domain component of the
GIG, high assurance is a must.

Architecture for a High-
Assurance GIG Component
The TSE, a government off-the-shelf
software development project funded by
the Space and Naval Warfare Systems
Command (SPAWAR) and National
Security Agency, is a network-enabled file
store with integrated read-down across
security domains. The TSE provides the
file store using the standard WebDAV
protocol. It has a separate hardware net-
work interface for each network security
level and a separate file store for data at
each level.

The TSE enforces the Bell-LaPadula
policy of information flow [2], in which
users on each network can read from
their own level and below, but can write
only to their own level. For example,
when one security level dominates
another (for example, TOP SECRET
dominates SECRET), the TSE allows
read-down – the ability for users at a high-
er level to access data from a lower level,
but not vice-versa. All levels share a sin-
gle name space, but views of that name
space differ according to the network
security level accessing the TSE.

Read-down eliminates the need for
low-security data to be explicitly copied
for users at high security. The single name
space combined with read-down makes a
wide range of applications and user work-
flows easier, more dynamic, and less error-
prone than existing solutions.

Developing, certifying, and evaluating
a high assurance cross-domain compo-
nent such as the TSE at acceptable cost
requires a fundamentally different archi-
tecture from that of typical, single-level
components. Our approach is the follow-
ing: Use as few high-assurance compo-
nents as possible, each with a single pur-
pose, to keep it small and simple, allowing
it to be analyzed formally. But security is a
property of a whole system, not just a
component. Appropriate composition
techniques can extend the security proper-
ties of the trusted computing base out-
ward to the rest of the system.

The TSE’s trusted computing base
consists of the minimum number of
components: one. TSE functionality is
decomposed into a set of single-level
components and only one cross-
domain component. The underlying
MILS separation kernel separates com-
ponents at different security levels.
Each network security level has a set of
clients, an authentication service, and
an integrity checker (see Figure 1).
Within the TSE, each network level has
its own network interface card, hard
drive, and software stack implementing
the TSE’s networking, WebDAV, and
file system services.

The TSE’s only cross-domain compo-
nent, the BAC, mediates all access
between the TSE and each level’s disks.

How can these components be
assembled to provide secure, cross-
domain services? 
1. The base must be secure before build-

ing on it. We must first establish the
isolation properties of the cross-
domain component.

2. We can then extend these properties
to physically separate networks by
mapping the software components to
separate partitions in the separation
kernel.

3. Finally, the separation kernel is config-
ured to permit communication only
between appropriate components.

The Cross-Domain Component
Together with the separation kernel, the
BAC is responsible for isolating each level
in the TSE. It is, therefore, the component
that needs to be evaluated and certified to
the highest levels of assurance. The BAC’s
functions are the following:
• Mediate all disk block access.
• Connect single-level disks and parti-

tions.
• Write blocks to the same level.
• Read blocks from the same or lower

levels.
The keys to BAC security are that it

has a well-defined job and is constructed
from very few lines of code. The current
version of the BAC is 780 lines of C code.
To ensure that the BAC implements the
required attributes, we do the following:
1. Develop a formal model of the code.
2. Verify that the model corresponds to

the code.
3. Develop a formal model of the policy.
4. Use model-based testing to check that

the code implements the policy.
5. Formally verify that the model imple-

ments the policy.
Our formal verification ensures that

the TSE security policy maps directly to
the model, and the model to the imple-
mentation. To map the policy to the
model, we use the Isabelle Higher Order
Logic (HOL) theorem prover [3]. The the-
orems we prove in this logic are the fol-
lowing:
• None of the error states are reachable.
• The noninterference property holds.

The noninterference property states
that all system actions by high security-
level components are invisible to low
security-level components; that is, the final
state of the low-level component is the
same as it would be if no actions had
occurred at the high-security level.

To map the model to the implementa-
tion, a code-to-spec review team of at
least two people performs a line-by-line
inspection of the HOL code and the C
implementation.

The example in Table 1 – a single step
of the BAC – shows how closely the
model matches the implementation. Our
model-based testing approach uses the
QuickCheck tool [4]. Based on a formal
statement of the security policy,

“The problem is caused
by a read-down – a user
on a high-level network
can read files from a

lower level while a user
on the low-level network

changes those files.”



Building Multilevel Secure Web Services-Based Components for the Global Information Grid

May 2006 www.stsc.hill.af.mil 17

QuickCheck generates test cases that
check whether or not the implementa-
tion violates that policy. The policies we
have verified using this method are the
following:
• Read-across: Reads fetch the data

written at that same level.
• Read-down:

° Valid reads succeed.
° Invalid reads (that is, read-up) fail.
° Read-downs do not affect the

lower level being read (noninterfer-
ence).

Other Key Components
MILS Separation Kernel 
The BAC, when hosted by the MILS sep-
aration kernel [5, 6], is an instantiation of
the reference monitor concept [7]. Unlike a
traditional operating system that provides
many services and abstractions, a separa-
tion kernel provides only data isolation
among separate partitions and controlled
communication between partitions. Porting
an application to MILS also requires
choosing a runtime or operating system to
run within each partition that provides the
higher-level system services the applica-
tion requires, or porting one of your own
choosing.

It is not enough simply to port a sin-
gle-level application to a MILS separation
kernel, however. The system needs to be
thoughtfully decomposed and mapped to
MILS partitions. Further, some key com-
ponents (such as the file system) may need
to be radically restructured to function in
a multilevel environment.

While the TSE project aims to be
portable across separation kernels, the ini-
tial target is Green Hills Software’s
INTEGRITY Server. This platform
allows us to deploy software components
from different security levels on the same
hardware, thus reducing space, weight,
and power requirements while retaining
isolation properties equal to those provid-
ed by networks on physically separate
hardware.

The WebDAV Server 
The single-level components of the TSE
are the WebDAV server, the file system,
the network stack, and the secure sockets
layer/transport-layer security (SSL/TLS).
To provide the security aspects of
WebDAV with high assurance, we imple-
mented the WebDAV server using
Haskell, a type-safe functional language
[8]. We ported the Haskell runtime system
to INTEGRITY server. The Haskell run-
time system encapsulates services such as
networking, threading, and memory man-
agement.

The Wait-Free File System 
As Figure 1 shows, the TSE file system is a
single-level component. We were surprised
to find that no existing single-level file sys-
tem met our requirements. The problem is
caused by read-down – a user on a high-
level network can read files from a lower
level while a user on the low-level network
changes those files. Ordinarily, locks could
be used to solve this problem, but cross-
domain locks violate non-interference and
are unacceptable in this case. How can the
TSE present consistent data without intro-
ducing a proscribed communication chan-
nel, overt or covert? 

Designers of algorithms for shared-
memory multiprocessors face a similar
problem that they solve using a method
called wait-free synchronization [9]. Wait-free
synchronization guarantees that interac-
tions with concurrent objects take a finite
number of steps instead of using critical
sections, which block competing processes
for an indeterminate time. The wait-free file
system adapts this idea for its own synchro-
nization method. This preserves the isola-
tion property by the following:
• Writers are oblivious to readers.
• Readers can proceed independently of

writers.

Outside Services 
To minimize the trusted base and avoid
duplication of function, the TSE will use,
or uses outside services wherever possible.
Key services are authentication and
integrity-checking; so far we have evaluat-
ed Navy enterprise single sign-on for
authentication and one-way file transfer
for integrity-checking, but final decisions
will be driven by the demands of specific
installations at customer sites.

Though it is conservative and efficient
to draw on outside services, it also means
that we must build a chain of trust from
our base to the outside service. We use
several methods to help us do so:
• Outside services are all single-level,

which minimizes their trustworthiness
requirements.

• We choose services specified and
trusted by our customers that have
been vetted in similar deployment sce-
narios.

• The TSE and companion services use
the standard cryptographic protocols
SSL/TLS and digital certificates to
manage communication between
them.
The sum of the TSE and a specific

set of external services is submitted for

TCP/IP
HTTP

WebDAV
file

system

Low

DiskN
IC

Authorization/

Authentication

Server

Content

Checker

LOW
USERS

TCP/IP
HTTP

WebDAV
file

system

Middle
DiskN

IC

Authorization/

Authentication

Server

Content

Checker

MIDDLE

USERS

TCP/IP
HTTP

WebDAV
file

system

High

DiskN
IC

Authorization/

Authentication

Server

Content

Checker

HIGH
USERS

CLIENT

NETWORK

COMPANION

SERVICES

MILS Separation Kernel

TRUSTED SERVICES ENGINE (TSE)

Block

Access

Controller

Read

Write

Unclassified

Unclassified

Unclassified

Secret

Unclassified

Unclassified

Unclassified

Secret

S
ec

r
et Unclassified

Unclassified

Unclassified

Secret

S
ec

r
et

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

Edit

Edit

Merge

F
ilte

r
P
ub

lis
h

Figure 1: Trusted Services Engine (TSE) Architecture

HOL Model C Code

bacStep :: "config => (unit, store) m"

"bacStep conf == 

let n = numLevels conf

in processQueuedLevels

(requestsPerLevel conf) n

>> queueLevels conf n"

void bacStep (config conf) {

nat n = conf->numLevels;

processQueuedLevels

(conf->requestsPerLevel, n);

queueLevels(conf, n);

}

Table 1: A Single Step of the BAC

Table 1: A Single Step of the Block Access Controller 



Transforming: Business, Security,Warfighting

18 CROSSTALK The Journal of Defense Software Engineering May 2006

the certification prerequisite to multi-
level deployment.

Building Complex Multilevel
Services on the TSE
The TSE can be used as a building block for
more complex cross-domain services, as
demonstrated by another current Galois
project, the Multilevel Document
Collaboration Server (DocServer). Its archi-
tecture reuses the decomposition structure
of the TSE to provide multilevel secure
document-based collaboration.

The DocServer allows a user at a high
network level to make private modifications
to an XML-based document stored at a
lower level. The DocServer supports ongo-
ing modifications at multiple network levels;
modifications from the high network are
visible only to users on the high network,
while modifications from the low network
are visible to users at that level and above.

The DocServer also supports publish-
ing regraded documents from high network
levels to low, using XML filtering and inte-
gration with an outside regrading system
such as Radiant Mercury or ISSE Guard.
These systems enable transfer of docu-
ments from high security to low security by
enabling a human reviewer to reliably
review all of a document’s contents (includ-
ing possibly hidden content), and, upon suc-
cessful review, write it to the low network.

In the case of the DocServer, a high-
level user marks up the document according
to a new set of security levels, and submits
it for regrading. The DocServer filters the
document and sends the filtered version to
the regrading system. After human review,
the filtered version of the document is writ-
ten to the DocServer’s low-level file system.

Figure 2 shows the publish, edit, merge
workflow of the DocServer. At left, a user

on the Secret network publishes the docu-
ment to the Unclassified network. The
DocServer filters the Secret content and
submits the resulting unclassified document
to the regrader. After regrading, users on
both network levels make modifications to
the document. Modifications made at
Secret are not visible below, but
Unclassified modifications are visible to
users at Secret using the DocServer’s merge
each time the document is read.

The DocServer is a Phase 1 Small
Business Innovative Research project fund-
ed by SPAWAR.

Conclusion
The DocServer uses the TSE for file stor-
age and its sole cross-domain component.
Reusing the only high-assurance compo-
nent gains us a great deal – the DocServer
should be certifiable to the same level as the
TSE with little additional work.

The DocServer’s use of the TSE to
achieve high assurance, cross-domain func-
tion mirrors the TSE’s internal use of the
BAC. By building the DocServer from this
core component, we once again take advan-
tage of the BAC, effectively extending its
security policy through to increasingly com-
plex systems.

The TSE’s component architecture
demonstrates a powerful technique for
extending the security properties of a for-
mally analyzed core component to a wide
scope. In a similar manner, the DocServer
uses MILS to extend the security properties
of the TSE outward to provide complex
multilevel functionality.

TSE Status
Development of Vers. 1.0 of the TSE will
be complete in summer 2006, and will be
followed by certification at a customer site.

We expect to begin Common Criteria eval-
uation at evaluation Level 6+ the following
year. Phase 1 of the DocServer is near
completion. We hope to begin Phase II in
spring 2006, and commercial transition
sometime in 2007.u

Acknowledgements
The authors would like to acknowledge
contributions from the following people:
David Burke with the evaluation and certifi-
cation sections; John Matthews and Paul
Graunke with the verification and validation
sections; and Lauren Ruth Wiener with the
clarity of thought and exposition.

References
1. Common Criteria <www.common

criteriaportal.org>.
2. D. E. Bell and L. J. LaPadula. Secure

Computer Systems: Mathematical
Foundations and Model. The Mitre
Corporation, 1976. <http://csrc.nist.
gov/publications/history/bell76.pdf>

3. Isabelle. “A Proof Assistant for
Higher-Order Logic.” University of
Cambridge Computer Laboratory
<www.cl.cam.ac.uk/Research/HVG/
Isabelle>.

4. QuickCheck Automatic Specification-
Based Testing <www.cs.chalmers.se/
~rjmh/QuickCheck>.

5. National Information Assurance
Partnership. U.S. Government Protec-
tion Profile for Separation Kernels in
Environments Requiring High Robus-
tness. Vers. 0.621. Ft. Meade, MD:
NIAP, July 2004 <http://niap.nist.
gov/pp/draft_pps/pp_draft_skpp_
hr_v0.621.html>.

6. Vanfleet, Mark W., et al. “MILS:
Architecture for High-Assurance
Embedded Computing.” Cross-
Talk Aug. 2005 <www.stsc.hill.af.mil/
crosstalk/2005/08/0508vanfleet_etal
.html>.

7. Anderson, James P. “Computer
Security Technology Planning Study.”
Fort Washington, PA: James Anderson
& Co, Oct. 1972 <http://csrc.nist.
gov/publications/history/ande72
.pdf>.

8. Haskell. Haskell: A General-Purpose
Purely Functional Language <www.
haskell.org>.

9. Herlihy, Maurice. “Wait-Free Synch-
ronization.” ACM Transactions on
Programming Languages and
Systems (TOPLAS) 13.1: 124-149.
New York: ACM Press, Jan. 1991
<http://portal.acm.org/citation.cfm?
id=102808>.

TCP/IP
HTTP

WebDAV
file

system

Low

DiskN
IC

Authorization/

Authentication

Server

Content

Checker

LOW
USERS

TCP/IP
HTTP

WebDAV
file

system

Middle
DiskN

IC

Authorization/

Authentication

Server

Content

Checker

MIDDLE

USERS

TCP/IP
HTTP

WebDAV
file

system

High

DiskN
IC

Authorization/

Authentication

Server

Content

Checker

HIGH
USERS

CLIENT

NETWORK

COMPANION

SERVICES

MILS Separation Kernel

TRUSTED SERVICES ENGINE (TSE)

Block

Access

Controller

Read

Write

Unclassified

Unclassified

Unclassified

Secret

Unclassified

Unclassified

Unclassified

Secret

S
ec

r
et Unclassified

Unclassified

Unclassified

Secret

S
ec

r
et

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

Edit

Edit

Merge

F
ilte

r

P
ub

lis
h

Figure 2: DocServer Merge Operations



Building Multilevel Secure Web Services-Based Components for the Global Information Grid

May 2006 www.stsc.hill.af.mil 19

About the Authors
Dylan McNamee, Ph.D.,
is the technical lead for
cross domain projects at
Galois Connections. He
received his doctorate in
computer science from

the University of Washington.

Galois Connections
12725 SW Millikan WY
STE 290
Beaverton, OR 97005
Phone: (503) 626-6616 x137
E-mail: dylan@galois.com

CDR Scott Heller is
currently the Cross Do-
main Solutions lead at
PMW 160 within the
Program Executive Of-
fice Command, Control,

Communications, Computers, and
Intelligence, and Space in San Diego,
Calif. He has a master’s degree in com-
puter science with an emphasis in Multi-
level Security from the Naval Post-
Graduate School in Monterey, Calif.

Program Executive Office
C41 and Space
626 Orange AVE #303
Coronado, CA 92118
Phone: (619) 929-1451
E-mail: scott.heller@navy.mil

Dave Huff serves as the
director, Exploratory
Projects Division at the
Fleet Numerical Meteor-
ology and Oceanography
Center. His team is

focused on information assurance and
Web-based techniques for establishing
identity, authorization, and cross-domain
information exchange.

Fleet Numerical Meteorology
and Oceanographic Center
7 Grace Hopper AVE
Monterey, CA 93943
Phone: (831) 656-4569
E-mail: dave.huff@

metnet.navy.mil

Enterprise Software Initiative 
www.esi.mil
The Enterprise Software Initiative (ESI) is a joint Department
of Defense (DoD) project to develop and implement a DoD
enterprise process. The objectives are to save money and
improve information sharing. The initial focus will be on com-
mercial off-the-shelf (COTS) products. The main problem
identified with procuring software for DoD is that the software
(including price, acquisition cost, distribution, training, main-
tenance, and support) costs too much. Enterprise Software is
DoD common-use, standards-compliant software. The DoD
ESI Steering Group, under the DoD Chief Information
Officers (CIO) Council, will develop and implement a DoD
Enterprise Process to identify, acquire, distribute, and manage
Enterprise Software. Comprised of agencies such as the Office
of the Secretary of Defense – ASD(NII)/DoD CIO, the
Department of the Navy, the Department of the Air Force, the
Department of the Army, the Missile Defense Agency, the
Defense Finance and Accounting Service, the Defense
Information Systems Agency, the Defense Logistics Agency, and
the National Geospatial-Intelligence Agency, ESI follows 14
principles to ensure cost effective software procurement and
provides 23 Best Practices to all Enterprise Software Agreements
with the DoD and the corporate world.

Defense Acquisition University
www.dau.mil
The Defense Acquisition University (DAU) touches all areas of
Acquisition, Technology, and Logistics workforce throughout
all professional career stages. The DAU offers a range of basic,
intermediate, and advanced certification training, assignment-
specific training, performance support, job-relevant applied
research, and continuous learning opportunities. 

By typing <https://acc.dau.mil/simplify/ev_en.
php?ID=94877_201&ID2=DO_TOPIC> into your Web

browser, the Quadrennial Defense Review (QDR) 2006 Report
overview page opens. The copy of the Department of Defense
(DoD) QDR Report addresses key logistic and sustainment
points and can be accessed at the bottom of the page by click-
ing <qdr2006.pdf>. The review points out successes of U.S.
Transportation Command to improve the department’s stan-
dard processes for providing materiel and logistics to meet the
immediate needs of forces in the field.  Also, the review identi-
fies opportunities for continued transformation of acquisition
and logistics processes. The QDR outlines the department’s
implementation of a number of specific initiatives aimed at
meeting supply chain objectives.

Office of Force Transformation
www.oft.osd.mil
The Office of Force Transformation (OFT) is solely dedicated
to transformation, linking creativity to implementation. OFT
works at the intersection of unarticulated needs and non-con-
sensual change, identifying and managing disruptive innova-
tion. OFT works outside the normal course of business activi-
ties with an entrepreneurial mindset. The OFT has outlined its
Top Five Goals of the Director, Force Transformation: 1) Make
force transformation a pivotal element of national defense strat-
egy and Department of Defense corporate strategy effectively
supporting the four strategic pillars of national military strate-
gy; 2) Change the force and its culture from the bottom up
through the use of experimentation, transformational articles
(operational prototyping) and the creation and sharing of new
knowledge and experiences; 3) Implement Network Centric
Warfare as the theory of war for the information age and the
organizing principle for national military planning and joint
concepts, capabilities, and systems; 4) Get the decision rules
and metrics right and cause them to be applied enterprise wide;
and 5) Discover, create, or cause to be created new military
capabilities to broaden the capabilities base and mitigate risk.

WEB SITES



2200 CROSSTALK The Journal of Defense Software Engineering May 2006

Performance-Based Earned Value®

(PBEVSM) is a set of principles and
guidelines that specify effective measures
of technical performance for use with
earned value management (EVM). Its
guidelines are based on standards and
models for systems engineering, software
engineering, and project management.
PBEV also supports Department of
Defense (DoD) policy and guides. PBEV
ensures that the product requirements
baseline, or technical baseline, is incorpo-
rated into the performance measurement
baseline (PMB). PBEV is an enhancement
to the EVM Systems (EVMS) standard [3].

DoD Guides
DoD acquisition policy states that pro-

grams implement systems engineering
plans (SEP) that include the success cri-
teria for technical reviews [4]. DoD
guides that implement the policy include
the Defense Acquisition Guidebook
(DAG), the Systems Engineering Plan
Preparation Guide (SEPPG), the Work
Breakdown Structure Handbook (MIL-
HDBK-881A [WBS]), and the Integrated
Master Plan and Integrated Master
Schedule Preparation and Use Guide.
Table 1 shows pertinent components of
the guides.

The DoD guides refer to EVMS.
However, EVMS has significant limita-
tions with regard to the standards and
models for systems engineering, soft-
ware engineering, and project manage-

ment [2]. Unless these limitations are
addressed, there is no assurance that the
PMB will include the activities and mea-
sures that lead to success. PBEV over-
comes these limitations.

For example, the EVMS guidelines
specify that earned value (EV) be based on
work performed, but only indirectly link
EV to meeting the product requirements or
the expected quality. In comparison, PBEV
bases EV on progress toward meeting the
allocated product requirements. PBEV’s
EV is based on the sum of two measures:
• Progress toward completing the set of

enabling work products.
• Progress toward meeting the product

requirements.

PBEV Principles and
Guidelines
PBEV’s foundation, characteristics, prin-
ciples, and guidelines were previously dis-
cussed [2]. Some guidelines that are ref-
erenced in this article are included in
Table 2.

PBEV Process Flow
A comparison of the PBEV process flow
with the traditional EVMS process flow
is shown in Figure 1. The PBEV process-
es and guidelines that supplement EVMS
are highlighted. PBEV includes three
processes that supplement EVMS that
address the product requirements:
• Define the product (also called the

technical baseline).
• Integrate product requirements and

quality with the plan.
• Measure progress toward meeting

product requirements and quality.
A fourth PBEV process addresses

risk management:
• Integrate risk management with the

plan.

Practical Performance-Based Earned Value

Performance-Based Earned Value’s® (PBEVSM) foundation, characteristics, and guide-
lines were described in previous CrossTalk articles [1] and [2]. This update
includes current Department of Defense guidance on systems engineering and practical
examples of implementing two of PBEV’s four principles. It provides examples of
basing earned value on measures of technical progress, on the progress of requirements
management activities, and on the entry and exit criteria for technical reviews. This arti-
cle also includes guidance for using PBEV to monitor a project.

Paul J. Solomon 
PMP

Tuesday, 2 May 2006
Track 5: 2:25 – 3:10 p.m.

Room 251 D-F

  
Event-driven timing of technical reviews. 4.5.1 3.4.4 3.2.3.1 2.3, 

3.3.2

Success criteria of technical reviews. 4.5.1 3.4.4 3.2.3.1 3.3.2 

Assess technical maturity in technical reviews. 4.5.1 3.4.4 3.2.3.1  
 

Integrate SEP with Integrated Master Plan (IMP). 4.5.1 3.4.5 1.2, 

2.3

 
Integrate SEP with Integrated Master Schedule (IMS). 4.5.1 3.4.5 1.2, 

2.3

 

  
Integrate SEP with Earned Value Management. 4.5.1 3.4.5 1.2, 

2.3

 

Integrate Work Breakdown Structure (WBS) with 

requirements specification, statement of work, IMP, 

IMS, and Earned Value Management System. 

2.2.3, 

3.2.3.3

3.4.3

 

 
Use TPMs to compare actual versus planned technical 

development and design maturity.

4.5.5 3.4.4 3.3.2 

 
Use TPMs to report degree to which system

requirements are met in terms of performance, cost,

and schedule. 

4.5.5 3.4.4 

Use standards and models to apply systems engineering. 4.2.2

4.2.2.1

Institute requirements management and traceability. 4.2.3.4 3.4.4 
  

 

 

DoD Systems Engineering Guides DAG SEP WBS
IMP/

IMS

4.2.3.2 1.0 Develop Systems Engineering Plan (SEP).

4.5.1 3.4.4 1.2, 

2.3(TPM).

Integrate SEP with Technical Performance Measurement

Referenced Performance-Based Earned Value Guidelines

1.1 Establish product requirements and allocate these to product components.

1.2 Maintain bidirectional traceability of product and product component requirements among

the project plans, work packages, planning packages, and work products.

2.2 Specify work products and performance-based measures of progress for meeting product

requirements as base measurements of earned value. Examples are:

  •  Results of trade-off analysis.

  •  Allocated requirements developed, implemented into design, or tested successfully.

  •  Achieving planned technical performance measures.

  •  Meeting entry and success criteria for technical reviews.

  •  Other quality objectives achieved.

2.4 Identify event-based, success criteria for technical reviews that include development maturity
to date and the product's ability to meet product requirements.

2.5 Establish time-phased, planned values for measures of progress towards meeting product

requirements, dates or frequency for checking progress, and dates when full conformance will

be met.
Table 2

2.6 Allocate budget in discrete work packages to measures of progress towards meeting

product requirements.

2.7 Compare the amount of planned budget and the amount of budget earned for achieving progress

towards meeting product requirements.

Table 1: Department of Defense Systems Engineering Policy and Guides

® Performance-Based Earned Value is registered with the
U.S. Patent and Trademark Office by Paul Solomon.

SM PBEV is a service mark of Paul Solomon.



Practical Performance-Based Earned Value

May 2006 www.stsc.hill.af.mil 21

Progress Toward Meeting
Requirements
Advice and examples follow for practical
implementation of the PBEV guidelines
that address the product requirements.
The program manager (PM) should select
base measures for EV that indicate
progress toward development, maturity,
implementation, and testing of the prod-
uct requirements.

Project management processes require
progress reporting at periodic intervals,
normally monthly. However, progress
toward meeting product requirements is
not always measurable on a periodic basis.
For example, a hardware or software com-
ponent may require the completion and
assembly of many enabling work products
such as drawings or coded software mod-
ules, before the integrated set of work
products may be measured against prod-
uct quality objectives. Consequently, inter-
im progress measurement is normally
against the scheduled completion of
enabling work products.

The first two examples apply to PBEV
guidelines that address the product
requirements (Guidelines 1.1, 2.2, 2.5, 2.6,
and 2.7).

Example 1: EV Based on Completing
Drawings and Meeting Requirements
Example 1 shows how to base EV on
both progress toward completing the set
of enabling work products and progress
toward meeting the product requirements.

The output of a work package is the
design of a component of a subsystem, a
set of wire harnesses. There are two
requirements that are allocated to the wire
harnesses: maximum weight and maxi-
mum diameter. The requirements follow:
• Maximum weight: 200 pounds.
• Maximum diameter: 1 inch.

The progress and EV of the work
package is measured by both the comple-
tion of the enabling work products (draw-
ings) and by meeting the requirements.
The schedule for completing the drawings
and for meeting the requirements is
shown in Table 3 (see page 22).

The budget is allocated as follows: The
work package for a component has a bud-
get at completion of 2,000 hours. Each
drawing has a budget value of 40 hours.

EV is dependent on the engineering
analyses that are performed to deter-
mine that the design meets the require-
ments. EV, also called Budgeted Cost of
Work Performed (BCWP), is decreased
(negative EV) if a requirement was not
met on schedule. EV is restored when
the requirement is finally met. The total

possible negative EV is 300 hours, as
follows:
• Component weight requirement not

met: -100.
• Diameter requirement not met: -200.
The schedule status at April month end
follows:
• Cumulative drawings completed: 41.
• Diameter requirement met.
• Component weight requirement not

met.
Table 4 shows the time-phased Budgeted
Cost for Work Scheduled (BCWS), how
EV increases for completing the draw-
ings and is reduced if the design fails to
meet requirements.

The unfavorable schedule variance
analysis should state that the drawings
are ahead of schedule (+40) but the
design has not met the planned require-

ments (-100). There will be an unfavor-
able impact to both the cost and sched-
ule objectives as the drawings are
reworked until the design meets the
requirements.

A discussion and examples of basing
EV on meeting software requirements,
including a technique for quantifying
deferred functionality, are provided in [1].

Technical Performance
Measurement 
Technical Performance Measurements
(TPMs) are defined and evaluated to
assess how well a system is achieving its
performance requirements. TPM uses
actual or predicted values from engineer-
ing measurements, tests, experiments, or
prototypes. In Example 1, TPMs are used

Table 2: Referenced Performance-Based Earned Value Guidelines

  
Event-driven timing of technical reviews. 4.5.1 3.4.4 3.2.3.1 2.3, 

3.3.2

Success criteria of technical reviews. 4.5.1 3.4.4 3.2.3.1 3.3.2 

Assess technical maturity in technical reviews. 4.5.1 3.4.4 3.2.3.1  
 

Integrate SEP with Integrated Master Plan (IMP). 4.5.1 3.4.5 1.2, 

2.3

 
Integrate SEP with Integrated Master Schedule (IMS). 4.5.1 3.4.5 1.2, 

2.3

 

  
Integrate SEP with Earned Value Management. 4.5.1 3.4.5 1.2, 

2.3

 

Integrate Work Breakdown Structure (WBS) with 

requirements specification, statement of work, IMP, 

IMS, and Earned Value Management System. 

2.2.3, 

3.2.3.3

3.4.3

 

 
Use TPMs to compare actual versus planned technical 

development and design maturity.

4.5.5 3.4.4 3.3.2 

 
Use TPMs to report degree to which system

requirements are met in terms of performance, cost,

and schedule. 

4.5.5 3.4.4 

Use standards and models to apply systems engineering. 4.2.2

4.2.2.1

Institute requirements management and traceability. 4.2.3.4 3.4.4 
  

 

 

DoD Systems Engineering Guides DAG SEP WBS
IMP/

IMS

4.2.3.2 1.0 Develop Systems Engineering Plan (SEP).

4.5.1 3.4.4 1.2, 

2.3(TPM).

Integrate SEP with Technical Performance Measurement

Referenced Performance-Based Earned Value Guidelines

1.1 Establish product requirements and allocate these to product components.

1.2 Maintain bidirectional traceability of product and product component requirements among

the project plans, work packages, planning packages, and work products.

2.2 Specify work products and performance-based measures of progress for meeting product

requirements as base measurements of earned value. Examples are:

  •  Results of trade-off analysis.

  •  Allocated requirements developed, implemented into design, or tested successfully.

  •  Achieving planned technical performance measures.

  •  Meeting entry and success criteria for technical reviews.

  •  Other quality objectives achieved.

2.4 Identify event-based, success criteria for technical reviews that include development maturity
to date and the product's ability to meet product requirements.

2.5 Establish time-phased, planned values for measures of progress towards meeting product

requirements, dates or frequency for checking progress, and dates when full conformance will

be met.
Table 2

2.6 Allocate budget in discrete work packages to measures of progress towards meeting

product requirements.

2.7 Compare the amount of planned budget and the amount of budget earned for achieving progress

towards meeting product requirements.

Figure 1: EVMS and PBEV Process Flows

 

Drawings  8  10 12 10  10 50 

Requirements Met:   

Weight 1 1 

Diameter  1  1 

Table 3 Schedule for Drawings and Requirements 

Guideline 1.1:

Guidelines 1.2, 2.2:

Guidelines 3.1, 3.2, 4.1, 4.2:

(P) Integrate risk

management with plan.

Guideline 2.7:

(P) Define the

technical baseline.

Define the work

(Work Breakdown Structure)

(P) Integrate product

requirements and 

quality with plan.

Execute the plan

Plan the work

(schedule and budget)

Implement

corrective action

(P) Measure product

requirements and quality.

Analyze variances

Measure the work

(P) = Supplemental Performance-Based Earned Value Process

Incoporate

internal/external

changes

Schedule Plan Jan. Feb. Mar. Apr. May Total

Figure 1: Earned Value Management Systems and Performance-Based Earned Value Process Flows



Transforming: Business, Security,Warfighting

22 CROSSTALK The Journal of Defense Software Engineering May 2006

to determine if the weight and diameter
requirements will be met.

Often, during the early stages of
drawing development, it may be too early
to measure TPM progress. For tasks that
are scheduled to complete before the first
TPM milestone, EV would be based only
on completing drawings per the organiza-
tion’s process quality procedures and
standards. Eventually, enough drawings
will have been completed to enable the
measurement of TPM achievement. If a
percentage of the work package budget
had been allocated to completing the
drawings and another percentage to
achieving planned TPM values, then the
work package would be held to less than
100 percent complete until the TPM
planned values are achieved.

If a TPM planned value is not
achieved when scheduled, take negative
EV for not meeting that requirement, as
was shown in Example 1.

The achievement of significant perfor-
mance requirements may not be measur-
able at the component level. If the design
of a component is at the work-package
level, completion of the design may
depend on achieving planned TPMs val-
ues or other quality objectives that are
only measurable at a higher level of the
system architecture or WBS. A technique
for constraining EV for a component level
work package is to earn part of the work-
package budget when the performance
objective is met at the higher level of the
WBS.

Example 2 is typical during develop-
ment of a project. A TPM objective is
established at the subsystem level. Many,
if not all, of the components of the sub-
system contribute to technical perfor-
mance. For a weight TPM, all compo-
nents play a part. For other TPMs, such
as response time, a subset of the compo-
nents, including both hardware and soft-

ware components, contributes to the sub-
system objective. In Example 2, EV at
the component level is based on both the
weight of the component (200 pounds)
and the weight of the subsystem to
which it belongs.

Example 2: EV When TPM Is
At a Higher WBS Level
The assumptions of this example follow:
• The component in Example 1 is one

of four components that form a sub-
system.

• The subsystem’s TPM objective is
4,000 pounds.

• The SEP states that some components
may be overweight at completion if
there are offsets in other components
as long as the total subsystem weight
does not exceed 4,000 pounds.
The EV solution for the component

that was first shown in Example 1 has
changed. In this example, the total possi-
ble negative EV is 500 hours, as follows:
• Component weight TPM planned

value not met: -100.
• Subsystem weight TPM planned value

not met: -200.
• Diameter requirement not met: -200.

In this example, the EV of the work
package for a component is dependent
on both the measured weight of the
component and the weight of the other
components within the same subsystem.
If both the component and the subsys-
tem weight planned values were not
achieved at the April milestone, the net
BCWP would be 1,340 hours, as shown
in Table 5, Net BCWP Based on
Component and Subsystem TPMs. This
technique may also incorporate higher
levels of the WBS.

Example 3: Progress of
Requirements Traceability and
Verification
Guideline 1.2 addresses requirements
traceability. This guideline supports the
SEPPG guidance for the technical man-
agement and control section of the SEP.
This section of the SEP describes the
approach for controlling the overall tech-
nical effort of the program, including the
technical baseline control and require-
ments management, traceability, and
requirements verification.

Example 3 demonstrates a method
for measuring progress of the systems
engineering effort to perform require-
ments management, traceability, and ver-
ification. Typical activities include: define
the requirement, validate the require-
ment, determine the verification method,
allocate the requirement, document the

Table 4: Net Budgeted Cost for Work Performed Based on Component Requirements

Table 3: Schedule for Drawings and Requirements

Figure 1: EVMS and PBEV Process Flows

 

Drawings  8  10 12 10  10 50 

Requirements Met:   

Weight 1 1 

Diameter  1  1 

Table 3 Schedule for Drawings and Requirements 

Guideline 1.1:

Guidelines 1.2, 2.2:

Guidelines 3.1, 3.2, 4.1, 4.2:

(P) Integrate risk

management with plan.

Guideline 2.7:

(P) Define the

technical baseline.

Define the work

(Work Breakdown Structure)

(P) Integrate product

requirements and 

quality with plan.

Execute the plan

Plan the work

(schedule and budget)

Implement

corrective action

(P) Measure product

requirements and quality.

Analyze variances

Measure the work

(P) = Supplemental Performance-Based Earned Value Process

Incoporate

internal/external

changes

Schedule Plan Jan. Feb. Mar. Apr. May Total

3

Design (drawings) Jan. Feb. Mar. Apr. May Total 

Planned drawings 8  10 12 10  10 50 

Budgeted Cost for Work Schedule (BCWS) – 

current

320 400 480 400 400 2000

 

BCWS – cumulative 320 720 1200 1600 2000 2000 

Actual drawings completed 9 10 10 12 
 

Budgeted Cost for Work Performed (BCWP)

(drawings) – current 

360 400 400 480 

BCWP (drawings) – cumulative 360 760 1160 1640  

Negative BCWP (requirements) – cumulative 100 

Net BCWP (drawings and requirements) 1540 

Schedule variance 40 40 -40 -60 

 

Design (drawings) Jan. Feb. Mar. Apr. May Total 

Planned drawings 8  10 12 10  10 50 

Budgeted Cost for Work Schedule (BCWS) – 

current 

320 400 480 400 400 2000

 

BCWS – cumulative 320 720 1200 1600 2000 2000 

Actual drawings completed 9 10 10 12 
  

Budgeted Cost for Work Performed (BCWP)

(drawings) – current 

360 400 400 480 

  

BCWP (drawings) – cumulative 360 760 1160 1640 
  

Negative BCWP (component weight) – cumulative 
 

-100 
    

Negative BCWP (subsystem weight) – cumulative    -200   

Net BCWP (drawings and requirements with  

technical performance measures) 

   1340   

Schedule Variance 40 40 -40 -260   

Software

Engineering

Budget N
u

m
b

e
r
 o

f

R
e

q
u

ir
e

m
e

n
ts

S
o

ft
w

a
r
e

E
n

g
in

e
e

r
in

g

B
u

d
g

e
t

D
e

fi
n

e

V
a

li
d

a
te

V
e

r
if

y

M
e

th
o

d
s

A
ll

o
c

a
te

V
e

r
if

y

D
o

c
u

m
e

n
t

V
e

r
if

y

Budget Percent

Transmitter

Battery

Control

Software

Total

Component

Enclosure

15% 20%15% 15% 20%15%

3 240 36 4836 36 4836

1 80 12 1612 12 12 16

2 160 24 3224 24 24 32

1 80 12 1612 12 12 16

9 720 108 144108 108 108 144

16 1280 192 256192 192 192256

3

Design (drawings) Jan. Feb. Mar. Apr. May Total 

Planned drawings 8  10 12 10  10 50 

Budgeted Cost for Work Schedule (BCWS) – 

current

320 400 480 400 400 2000

 

BCWS – cumulative 320 720 1200 1600 2000 2000 

Actual drawings completed 9 10 10 12 
 

Budgeted Cost for Work Performed (BCWP)

(drawings) – current 

360 400 400 480 

BCWP (drawings) – cumulative 360 760 1160 1640  

Negative BCWP (requirements) – cumulative 100 

Net BCWP (drawings and requirements) 1540 

Schedule variance 40 40 -40 -60 

 

Design (drawings) Jan. Feb. Mar. Apr. May Total 

Planned drawings 8  10 12 10  10 50 

Budgeted Cost for Work Schedule (BCWS) – 

current 

320 400 480 400 400 2000

 

BCWS – cumulative 320 720 1200 1600 2000 2000 

Actual drawings completed 9 10 10 12 
  

Budgeted Cost for Work Performed (BCWP)

(drawings) – current 

360 400 400 480 

  

BCWP (drawings) – cumulative 360 760 1160 1640 
  

Negative BCWP (component weight) – cumulative 
 

-100 
    

Negative BCWP (subsystem weight) – cumulative    -200   

Net BCWP (drawings and requirements with  

technical performance measures) 

   1340   

Schedule Variance 40 40 -40 -260   

Software

Engineering

Budget N
u

m
b

e
r
 o

f

R
e

q
u

ir
e

m
e

n
ts

S
o

ft
w

a
r
e

E
n

g
in

e
e

r
in

g

B
u

d
g

e
t

D
e

fi
n

e

V
a

li
d

a
te

V
e

r
if

y

M
e

th
o

d
s

A
ll

o
c

a
te

V
e

r
if

y

D
o

c
u

m
e

n
t

V
e

r
if

y

Budget Percent

Transmitter

Battery

Control

Software

Total

Component

Enclosure

15% 20%15% 15% 20%15%

3 240 36 4836 36 4836

1 80 12 1612 12 12 16

2 160 24 3224 24 24 32

1 80 12 1612 12 12 16

9 720 108 144108 108 108 144

16 1280 192 256192 192 192256

Table 5: Net Budgeted Cost for Work Performed Based on Component and Subsystem Technical
Performance Measurements 



Practical Performance-Based Earned Value

May 2006 www.stsc.hill.af.mil 23

verification procedure, and verify that the
requirement has been met. The require-
ments traceability matrix (RTM) should
be used to record the status of each
requirement as it progresses through this
cycle. A time-phased schedule for the
planned completion of these activities is
the basis for the PMB. A measure of the
status of the system or subsystem
requirements in the RTM should be a
base measure of EV.

In Example 3, a system includes five
components, 16 total requirements, and
six systems engineering activities. The
budget allocation is shown in Table 6.

An example of the schedule and the
BCWS for the systems engineering effort
for one of the components, the enclo-
sure, is shown in Table 7. The time-
phased BCWS is determined by allocating
the budget for each activity to the month
in which it is scheduled.

Using PBEV to Monitor a
Project
A customer may use PBEV to validate the
planning baseline and to monitor the sup-
plier’s progress. The customer should utilize
the Integrated Baseline Review (IBR) to ver-
ify that the SEP includes all required plans,
planned values, and process descriptions.
The IBR should also be used to verify that
the plans, entry criteria, and exit criteria in
the SEP are integrated with the master
schedule and the work packages. For exam-
ple, the master schedule should include the
criteria for completing technical reviews and
milestones for measuring technical perfor-
mance as well as the TPM planned value to
be achieved at that milestone.

Example 4: Exit Criteria
The entrance and exit criteria for event-
driven technical reviews should be
defined in the SEP. The exit criteria
should also be the completion criteria for
work packages that map to the reviews.
An example of the exit criteria for a sys-
tem-level detailed (critical) design review,
from the systems engineering standard,
Institute of Electrical and Electronics
Engineers (IEEE) 1220-1998 [5], follows:
• Detailed design satisfies system baseline.
• Design solution meets the following:

° Allocated functional and perfor-
mance requirements.

° Interface requirements.
° Workload limitations.
° Constraints.

• Design verification complete for the
following:
° Each requirement constraint is

traceable to the physical architecture.

° Design element solutions satisfy
the validated requirements baseline.

PBEV guidelines 2.2 and 2.4 address
technical reviews. The customer should
apply these guidelines when reviewing the
SEP with the supplier. Use the IBR to
reach agreement on the entry and exit cri-
teria for all major technical reviews with
regard to the technical baselines. The
technical baselines are important work
products that should be included in the
IMS and work packages. The technical
reviews described in the DAG with their
respective baselines and their IEEE 1220-
1998 equivalents are shown in Table 8,
DoD Technical Reviews and Baselines.

Following the IBR, the customer is
advised to conduct periodic reviews to
ensure suppliers are following their plans,

procedures, and standards (including those
for systems engineering and EVM). The
customer should also perform independent
assessment of the supplier’s progress and
verify that the correct base measures are
specified and used for EV. The PM should
address technical maturity, including TPM
achievement and reporting, during technical
assessment reviews. Finally, the PM should
verify that the supplier has met the exit cri-
teria of event-driven technical reviews.

On a recurring basis, the customer
should monitor supplier reports. Review
the supplier’s EV reports, master sched-
ule, and technical reports to determine if
they are consistent; and evaluate supplier
metrics (product, schedule, EV) by
understanding and questioning the infor-
mation, including variance analysis. If

Table 6: Systems Engineering Budget Allocation

3

Design (drawings) Jan. Feb. Mar. Apr. May Total 

Planned drawings 8  10 12 10  10 50 

Budgeted Cost for Work Schedule (BCWS) – 

current

320 400 480 400 400 2000

 

BCWS – cumulative 320 720 1200 1600 2000 2000 

Actual drawings completed 9 10 10 12 
 

Budgeted Cost for Work Performed (BCWP)

(drawings) – current 

360 400 400 480 

BCWP (drawings) – cumulative 360 760 1160 1640  

Negative BCWP (requirements) – cumulative 100 

Net BCWP (drawings and requirements) 1540 

Schedule variance 40 40 -40 -60 

 

Design (drawings) Jan. Feb. Mar. Apr. May Total 

Planned drawings 8  10 12 10  10 50 

Budgeted Cost for Work Schedule (BCWS) – 

current 

320 400 480 400 400 2000

 

BCWS – cumulative 320 720 1200 1600 2000 2000 

Actual drawings completed 9 10 10 12 
  

Budgeted Cost for Work Performed (BCWP)

(drawings) – current 

360 400 400 480 

  

BCWP (drawings) – cumulative 360 760 1160 1640 
  

Negative BCWP (component weight) – cumulative 
 

-100 
    

Negative BCWP (subsystem weight) – cumulative    -200   

Net BCWP (drawings and requirements with  

technical performance measures) 

   1340   

Schedule Variance 40 40 -40 -260   

Software

Engineering

Budget N
u

m
b

e
r
 o

f

R
e

q
u

ir
e

m
e

n
ts

S
o

ft
w

a
r
e

E
n

g
in

e
e

r
in

g

B
u

d
g

e
t

D
e

fi
n

e

V
a

li
d

a
te

V
e

r
if

y

M
e

th
o

d
s

A
ll

o
c

a
te

V
e

r
if

y

D
o

c
u

m
e

n
t

V
e

r
if

y

Budget Percent

Transmitter

Battery

Control

Software

Total

Component

Enclosure

15% 20%15% 15% 20%15%

3 240 36 4836 36 4836

1 80 12 1612 12 12 16

2 160 24 3224 24 24 32

1 80 12 1612 12 12 16

9 720 108 144108 108 108 144

16 1280 192 256192 192 192256

4

Table 7 Systems Engineering Schedule and BCWS 

System Functional Review System Functional Baseline 4.3.3.4.3  Validated

Requirements Baseline 

Preliminary Design Review System Allocated Baseline 4.3.3.4.4 Verified Physical 

Architecture

Critical Design Review System Product Baseline 4.3.3.4.5 Verified Physical 

Architecture

Production Readiness 

Review

System Product Baseline 4.3.3.9.3 Verified Physical 

Architecture

Enclosure Schedule

Defined

Validated 2 1

3

Verified Method 1 2

Allocated 3

Traced to Verification 3

Verified 3

Defined

Validated

Verified Method

Allocated

Traced to Verification

Verified

36 36

24 12 36

12 24 36

48 48

36 36

48 48

Total 36 24 24 24 48 36 48 240

Jan. Feb. Mar. Apr. May June July Total

Technical Review Technical Baseline DAG IEEE 1220-1998

Budgeted Cost for Work Scheduled

Table 7: Systems Engineering Schedule and Budgeted Cost for Work Scheduled 



24 CROSSTALK The Journal of Defense Software Engineering May 2006

Transforming: Business, Security,Warfighting

the information appears inconsistent or
if the variance analysis and corrective
action plans are insufficient, conduct
reviews to obtain insight into metrics
and to better understand the causes and
impacts of the variances.

Conclusion
PBEV supplements traditional EVMS
with the best practices of systems engi-
neering, software engineering, and project
management standards and models. Its
principles and guidelines enable true inte-
gration of project cost, schedule, and
technical performance.u

References
1. Solomon, Paul J. “Practical Software

Measurement, Performance-Based
Earned Value.” CrossTalk Sept.
2001: 25-29 <www.stsc.hill.af.mil/
crosstalk/2001/09/solomon.html>.

2. Solomon, Paul J. “Performance-Based
Earned Value.” CrossTalk Aug.
2005: 25-26 <www.stsc.hill.af.mil/
crosstalk/2005/08/0508solomon.html>.

3. Government Electronics and
Information Technology Association.
“ANSI Earned Value Management
System (EVMD) Standard.” ANSI/
EIA-748-A-1998 R2002. Arlington,
VA <http://electronics.ihs.com/
a b s t r a c t s / g e i a - s t a n d a r d s .
jsp>.

4. Wynne, Michael. Policy for Systems
Engineering in DoD. Memorandum,
20 Feb. 2004. Acting Undersecretary
of Defense, Acquisition, Technology
and Logistics.

5. Institute of Electrical and Electronics
Engineers. “IEEE Std. 1220-1998
Standard for Application and
Management of the Systems
Engineering Process.” IEEE, Dec.
1998.

About the Author

Paul J. Solomon moni-
tors Earned Value
Management Systems
(EVMS) for Northrop
Grumman Corporation
Integrated Systems. He

has supported the B-2 Stealth Bomber,
Global Hawk, and F-35 Joint Strike
Fighter programs. He is an author of
the EVMS standard, and received the
Department of Defense’s David
Packard Excellence in Acquisition
Award. While a Visiting Scientist at the
Software Engineering Institute, he
authored “Using CMMI to Improve
EVM.” His book, “Performance-Based
Earned Value,” co-authored with Ralph
Young, will be published by the
Institute of Electrical and Electronics
Engineers Computer Society. Solomon
is a Project Management Professional.
He has a Bachelor of Arts and Master
of Business Administration from Dart-
mouth College.

Northrop Grumman
Integrated Systems
One Hornet WY 
TD21/2C
El Segundo, CA 90245
Phone: (310) 335-3308
E-mail: solomonpbev@msn.com

4

Table 7 Systems Engineering Schedule and BCWS 

System Functional Review System Functional Baseline 4.3.3.4.3 Validated

Requirements Baseline 

Preliminary Design Review System Allocated Baseline 4.3.3.4.4 Verified Physical 

Architecture

Critical Design Review System Product Baseline 4.3.3.4.5 Verified Physical 

Architecture

Production Readiness 

Review

System Product Baseline 4.3.3.9.3 Verified Physical 

Architecture

Technical Review Technical Baseline DAG IEEE 1220-1998

Table 8: Department of Defense Technical Reviews and Baselines

Paul J. Solomon will also be present-
ing a tutorial on integrating systems
engineering with earned value man-
agement at the SSTC on Monday, 1
May from 8:00 to 11:15 a.m. in room
251 D-F.

Management Basics
November 2006

Submission Deadline: June 19
 

Requirements Engineering
December 2006

Submission Deadline: July 17

Enabling Technologies for Net-Centricity
January 2007

Submission Deadline: August 21

Please follow the Author Guidelines for CrossTalk, available on the
net at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on all 
are-related topics at any time, along with Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could
be useful to others, CrossTalk can get the word out. We are
specifically looking for articles on software-related topics to
supplement upcoming theme issues. Below is the submittal schedule
for three areas of emphasis we are looking for:



May 2006 www.stsc.hill.af.mil 25

In a May 2005 CrossTalk article [1],
I discussed six agile software develop-

ment myths and four recommended
extensions to apply agile on large distrib-
uted projects. Over the past year, I have
had the opportunity to work with multi-
ple clients applying agile – or a modified
form of agile – on large U.S. defense con-
tracts. In this article, I share what was
learned through nine scenarios developed
from actual project experiences, along
with 22 related lessons learned.

As background for those unfamiliar
with agile methods, and to set the context
for the scenarios, the agile manifesto [2]
provides the following four value state-
ments agreed to by the founders of the
most popular agile methods:
• We value individuals and interactions

over processes and tools.
• We value working software over doc-

umentation.
• We value customer collaboration over

contract negotiation.
• We value responding to change over

following a plan.

Scenario 1
Agile Planning 
An appealing characteristic of agile soft-
ware development is its potential to help
manage change. A client said to me, “We
have good requirements for what we
know today, but technology changes fast.
I need my contractor to be ready to
change direction.” My client’s contractor
had won the job based on his proposed
agile approach. I was asked by my client
to assess that approach.

The contractor was planning incre-
mental deliveries of the refined and allo-
cated requirements along with functional
capabilities. I became concerned with the
approach based on responses I was get-

ting to one particular question: “What if
at the start of the third increment, your
customer gives you new priorities and
wants to change direction?” The most
common response was, “There is no
room in our schedule to change direction.
We already have too much to do.” I then
asked, “What if some things were taken
off your current list?” The response was
not positive, so I asked my client a simi-
lar question. He replied, “I never take
anything off the list.”

Analysis
The first concern is the statement that
there is “no room in our schedule to
change direction.” Adjusting the plan con-
tinually is a fundamental characteristic of
agile methods. In Scenario 1, work was par-
titioned into scheduled blocks called incre-
ments, but there was no real plan to adjust
the effort, degree of detail, or planned
tasks during each increment’s detailed plan-
ning based on new priorities or risks.

The second concern was the statement
“I never take anything off the list.”
Collaboration means cooperation, but it
also implies a willingness to honestly con-
sider alternatives. The customer, although
he wants his contractor to be ready for
change, does not appear to be planning to
collaborate.

Agile Planning Insight
There should always be things you can
take off the list, but this does not mean
customers on agile projects must live
without all their requirements. I will
explain this further later in the article.

Scenario 2
Agile Requirements
I was called in to help a large agile project
that was in trouble. The program manag-

er wanted his team to be agile; to help, he
initiated a few rules. His first rule for his
systems engineers was, “Don’t write more
than 100 requirements.”

When I talked to a developer on the
project, he said, “We wanted more details.
There was too much ambiguity in the
requirements.” Another said, “There was
a lack of flow-down of requirements
from systems engineering.”

When I shared the developer’s com-
ments with a systems engineer, he said,
“We were told to pull back.” Then he
added, “I don’t get it. How are you sup-
posed to handle firm requirements on an
agile project? If we don’t write detailed
requirements with agile, what are systems
engineers expected to do?”

Lessons Learned
The first lessons learned address these
statements: Don’t write more than 100
requirements, and how are you supposed
to handle firm requirements on an agile
project?

Lesson 1: Write down all your must-
do/firm requirements as soon as you
know them, and do not plan to collabo-
rate on them. For those who claim this
recommendation is not agile, I say, this is
practical agility and the following is why:
Trying to collaborate on truly firm require-
ments will only frustrate your team and
waste resources. I have witnessed this
frustration on multiple occasions during
this past year.

When I use the term collaborate, I
mean an honest consideration of alterna-
tives and a willingness to give. I am not
saying do not talk to your customer about
the requirements, but I am saying if there
is no room to give, then do not pretend
there is. Collaboration – in the agile con-

Lessons Learned Using Agile Methods on 
Large Defense Contracts 

While the agile movement began on small commercial projects, many contractors are
employing these methods today (to varying degrees) on large defense contracts. In the
process, new challenges are being faced that are not addressed by current published agile
literature. Examples of questions being asked include: How do we treat firm require-
ments? How do we report earned value? How are systems engineering, configuration
management, and our test group affected? How should we handle traditional customer
deliverables? What can we do about personnel who are not motivated to work on self-
directed teams? This article employs scenarios based on actual project situations occur-
ring in 2005 to share the latest lessons learned on what is working and what isn’t work-
ing when applying agile software development on large government defense projects. 

Monday, 1 May 2006
Track 2: 3:55 – 4:40 p.m.

Ballroom B

Paul E. McMahon
PEM Systems



26 CROSSTALK The Journal of Defense Software Engineering May 2006

text – means more than talking – it
implies taking action that leads to change.

Some have suggested that the term
negotiation might be more appropriate in
this context, but negotiation brings with
it an us and them implication. Alistair
Cockburn tells us that “In properly
formed agile development, there is no
‘us’ and ‘them,’ there is only ‘us’ [2].”

However, one cautionary note: Are
you sure you recognize a must-do
requirement when you see one? As an
example, one of my clients is moderniz-
ing a legacy system. There are lots of
firm requirements. The functionality of
the legacy system must be maintained,
but the users do not need to achieve that
functionality the same way. This has been
a great point of confusion and con-
tention on the project.

Lesson 2: We often confuse nice-to-have
requirements with firm must-do require-
ments. Yes, this sounds like basic systems
engineering, and I know some of you
may be thinking this is not an agile issue.
But it is, and lesson No. 3 is why.

Lesson 3: Systems engineering is still
required with agile development. I find
that in the name of agile, many large
projects are forgetting fundamental sys-
tems engineering.

Lesson 4: We must get out of the
sequential waterfall mentality – this is
an outdated way of thinking and it does
not work with agile methods.

Lesson 5: Agile does not require fewer
written requirements. It does require
collaboration to identify the needed
detail to implement what the team is
focusing on now in this increment. The
word flow-down implies an ordering –
something occurring before something
else. Systems engineering does its job
before software developers do theirs.
Systems engineering does the require-
ments. The developers wait for the hand-
off. This way of thinking will not work
with agile methods.

Systems engineering pullback is exactly
the reverse of what should be happening.
On large projects in particular, there are
still some very important sequential activ-
ities that must happen. For example, sys-
tems engineering must do a high-level first
pass of requirements and allocate them to
major incremental releases before the devel-
opers get going. This is by no means the
end of systems engineering. Today, this
point is too often being missed. The criti-
cal and most intense part of systems engi-

neering with agile is still ahead after the
high-level requirements. This is the collab-
oration on the details that must happen
concurrently, working closely with the devel-
opers in each increment.

The No. 4 and 5 lessons learned
address the following statements:
• There is a lack of flow-down of

requirements.
• We were told to pull back.
• What are systems engineers expected

to do? 

Scenario 3
Customer Collaboration and the
Program Manager
A systems engineer on a large agile project
told me that he had been told to keep quiet
at a review concerning a specific technical
topic. He said the program manager had
told him, “We want to be collaborative.”

I was concerned when I heard this com-
ment that someone had misunderstood col-
laboration, so I raised the issue with anoth-
er team member. He explained to me that
the technical topic had been thoroughly dis-
cussed and resolved at a previous meeting.
The program manager apparently did not
want to waste time revisiting it. This made
sense to me, but do not dismiss this sce-
nario lightly. Effective implementation of
collaboration on agile projects is closely
linked to requirements lists, task lists, and
collaboration rules. This is explained further
in the following paragraphs.

Lessons Learned
Lesson 6: The program manager should
not assume the agile team knows how to
collaborate. Many will need to be taught

how to recognize good collaboration
opportunities, and when it is time to stop
collaborating. In Scenario 3, the program
manager knew the technical topic had
been previously discussed and resolved.
He also knew that you can collaborate too
much, which led to his decision.

If you are the program manager on an
agile project, expect more conflict early.
This is because of the shorter iterations and
risk focus. Because of this early increased
conflict, it is critical to have a strong conflict
management process in place and personnel
trained in using that process [3]. I have
observed in the past year both too much
and too little collaboration.

One reason people fail to collaborate is
because it can be draining. Collaboration
takes time and energy. This is one reason
why it is important to distinguish truly firm
requirements from nice-to-have requirements.
This helps us pick our battles wisely.

Recognize opportunities for effective
collaboration. As an example, when a
developer says, “We wanted more
details,” as we saw in Scenario 2, this is a
likely opportunity for collaboration. He is
saying we need more discussion and
action (e.g., updates to task lists) because
the current requirements/task list is
ambiguous, or is missing tasks.

Lesson 7: The program manager’s role on
an agile project is affected by how he/she
interacts with the agile team, particularly
with respect to requirements and task
lists. Some program managers have asked,
“Does agile affect my job?” If you are the
program manager, I recommend that you
encourage your team to resolve ambiguous
requirements and add missing tasks to the
appropriate list. This will ultimately provide
more accurate visibility of the real status
back to you.

Program managers should also let their
team know they expect to hear about more
issues early and that they will not shoot the
messenger. This may sound trite, but the man-
ner in which a program manager responds
to issues raised early can set the tone for the
entire project with respect to timely and
accurate reporting up the chain. This is par-
ticularly important on agile projects due to
the increased tendency to push work out as
we will see later in Scenario 5.

Lesson 8: On large projects it is necessary
to have multiple lists. The organization of
most large agile projects includes many
hub-teams that interact differently from
teams in traditional hierarchical organiza-
tions. We refer to the teams as hub-teams
rather than sub-teams because of the man-
ner in which the teams interact [1, 4].

“If you are the program
manager on an agile
project, expect more

conflict early ... Because
of this early increased
conflict, it is critical to
have a strong conflict

management process in
place and personnel
trained in using that

process.”

Transforming: Business, Security,Warfighting



Lessons Learned Using Agile Methods on Large Defense Contracts 

May 2006 www.stsc.hill.af.mil 27

Large projects tend to have more
complex products and sub-products. This
implies multiple lists. The top list includes
the end-customer requirements (e.g.,
product backlog list for full project/prod-
uct). Lower lists are more solution (e.g.,
design) and task oriented and are used by
individual hub-teams to remove ambigui-
ty of higher-level requirements and clari-
fy task responsibility.

Lesson 9: When you understand how
the full family of lists works together on
a large agile project, you will understand
why there is always something you can
take off the list. We remove ambiguity by
collaborating and adding solution space
items to lower lists (e.g., hub-team lists
for specific increments/iterations). By
solution space items, I mean tasks associ-
ated with design decisions (e.g., the look
and feel of a user interface), and other
real work that team members must do
(e.g., preparation for a customer review
and documentation). Because the solu-
tion space provides choice, it also pro-
vides opportunity to collaborate – to
consider and be open to alternatives. This
is a full team responsibility and must
include systems and software engineering
and customer representatives.

You can think of the lower lists as the
result of successful collaboration as long as
those lists represent the real work being
done by the project teams. Watch for
warning signs of failed collaboration such as
work that is happening, but is not on any
list and has not been agreed to.

Scenario 4
Customer Collaboration and User
Conferences
One of my agile project clients has a very
large customer community. To gain early
feedback, user conferences were held to
demonstrate incremental versions of the
product. Developers were sent to the con-
ferences to interact directly with the users.

One team member who attended a
user conference commented, “We
thought the direct interaction between
the customers and our developers would
lead to fewer requirements, but the users
wanted more.” Another said, “Many
users wanted different things. Our devel-
opers did not know who to listen to.”
Another said, “Some users became upset
because they did not see all their require-
ments in the demonstrated product.”

Lessons Learned
I used to say, “You can involve the cus-
tomer too early even on an agile project.”
But this does not communicate the situa-

tion accurately. I now say, “You can never
bring the customer in too soon as long as
you know who your customer is.”

Ken Schwaber, co-developer of the
Scrum process (a popular agile method),
uses the term product owner rather than cus-
tomer. The product owner is responsible
for representing the stakeholders [5]. The
product owner manages the team list. In
Scrum, the team list is referred to as the
Product and Sprint Backlogs. The product
owner is responsible to keep the list in
priority order, and provides clarifications
to the team when needed.

Lesson 10: Each hub-team must have its
own single product owner and its own sin-
gle list for the work that is approved to be
working on now. In Scenario 4, the devel-
opers did not know who their product
owner was. User conferences are encour-
aged to allow developers to hear the needs

of end users directly. However, approval for
work by individual hub-teams must be
coordinated through a single product
owner. Similarly, once work is approved for
a hub-team, its priority must be clear and in
which increment it is approved to be
worked on. There should be a single list for
each hub-team for the current approved
work. Large projects will have many hub-
teams (e.g., a project with 500 people could
have 50 hub-teams). This implies 50 prod-
uct (or sub-product) owners (one for each
team). This does not mean each product
owner must be dedicated full-time to the
product owner role.

I have heard some say that agile will
not scale up because there are not enough
customer personnel. The implication is that
customer must be the end-customer. But
often on large agile projects, the right

customer is not the end-customer, but
rather someone who represents the end
customer.

Lesson 11: The right systems engineer
may be the perfect candidate for a prod-
uct owner role. This lesson addresses the
question, “What are systems engineers
expected to do?” Thinking of a systems
engineer as a product owner should not
seem like a foreign idea. In many large
organizations, systems engineering is
viewed as the customer for software engi-
neering.

Schwaber, in describing the relation-
ship of the team and the product owner,
refers to “constantly collaborating, schem-
ing together about how to get the most
value for the business” [5]. This is the
model of how systems engineering, soft-
ware engineering, and support organiza-
tions in large companies should be operat-
ing for effective agile operations – schem-
ing together (in a positive way) with a
common goal of value for the business.
Unfortunately today, many large organiza-
tions do not operate under this model, but
rather with a throw-it-over-the-wall/not-my-
problem sequential/waterfall mind-set.

Scenario 5
Risks and Priorities
On one project, a hub-team lead engineer
said he learned for the first time, in a
recent formal program review with the
customer, that some work his hub-team
was dependent upon was being shifted
out to a later increment by another hub-
team on the project. That other hub-team
had decided they had higher priority and
higher risk tasks to work on. No one
from that hub-team had coordinated the
change with the dependent hub-team,
nor did the lead of that team realize the
impact of his team’s decision.

Lessons Learned
Lesson 12: Hub-teams on larger projects
must not decide to move functionality
out without collaborating with their
product owner. In Scenario 5, the hub-
team made a decision to reprioritize their
work without coordinating this change
with a dependent team. The product
owner must approve any changes to hub-
team plans.

Lesson 13: Product owners on large
agile projects must meet regularly to
coordinate hub-team changes with
interfacing product owners. On large
projects, the product owner has a larger
set of responsibilities than on small agile
projects. The product owner must coor-

“Thinking of a systems
engineer as a product
owner should not seem

like a foreign idea.
In many large

organizations, systems
engineering is viewed 

as the customer 
for software

engineering.”



Transforming: Business, Security,Warfighting

28 CROSSTALK The Journal of Defense Software Engineering May 2006

dinate any decisions to change priorities
of planned work with all dependent
product owners. Individual teams may
not be aware of the full project impact
of a change to their plans. The coordina-
tion process described in this lesson is
missing today on many large projects
attempting to be agile. Refer to Figure 1
for a diagram of a large agile project
team’s roles, lists, and interactions.

Lesson 14: A project integration plan is
a critical artifact that needs to be
employed by product owners on large
agile projects. I asked a developer on a
large agile project where I could find the
project integration plan. He replied, “We
do use cases. We do not need an integra-
tion plan.”

Integration occurs earlier and more
frequently on an agile project. Part of
the expanded responsibilities of the
product owner on large agile projects
includes coordination and approval of
changes to the work at the hub-team
level that may have an impact on inter-
facing teams. A project integration plan
becomes more critical on agile projects
due to the increased integration frequen-
cy. It is a critical artifact that should be
employed by hub-team product owners
when discussing potential changes to
planned work.

One reason the integration plan is so
important on large agile projects is
because one can become lost in the
details of all the individual team lists on a
large project. The integration plan helps
the project leaders see the big picture,
which is essential when considering plan
changes.

Lesson 15: Use cases are not a replace-
ment for the integration planning. Use
cases can help developers understand the
project requirements. An integration plan
conveys the overall project road map,
including the planned sequence of activi-
ties and dependencies. One cannot
replace the other.

Scenario 6
Agile Earned Value 
That same hub-team that had shifted
planned work out had also reported that
it had completed 100 percent of its
planned functionality for the same incre-
ment. When questioned about the func-
tionality that was being moved out, the
lead engineer said that his team had made
the decision to move that work out based
on priority and risk, so he decided not to
include it in his measurement reporting
for that increment.

Lessons Learned
Lesson 16: One of the greatest values of
agile is early visibility to management of
accurate status. This visibility is possible
only if progress is reported relative to
the baseline plan. In Scenario 6, the hub-
team lead engineer made the decision not
to include planned work in his measure-
ments. As previously discussed, the hub-
team should not make decisions on mov-
ing work without coordination with the
product owner. But even if work is agreed
to be moved out after the start of an
increment, it is critical that the earned
value report continue to be based on the
original baseline plan. Key to agile is the
reporting of true team velocity. A com-
mon, but costly, mistake on many large

incremental projects is pushing planned
work out and not raising the visibility. If
you push work out, do not hide it. Raise it
up through accurate earned value report-
ing.

Scenario 7
Self-Directed Teams
I was explaining how self-directed teams
operate to a group of senior leaders at
one of my client’s locations where they
were initiating a new agile project. An
experienced senior engineer interrupted
with the statement, “It will never work on
large projects because you will never find
enough people with the necessary self-
direction skills.” My first reaction was
that he might be right. I have since
changed my view.

Lessons Learned
Lesson 17: Seed your hub-teams with
agile-knowledgeable leaders. I used to
buy into the idea that agile methods
required special skills that many average
developers could not master. An exam-
ple is estimating the personal effort
required to complete a task, and report-
ing actual personal progress accurately.
Watching agile take hold in organizations
has led me to change this belief. Now I
believe most team players can pick up
agile skills easily.

When a project has leaders who
understand agile practices, and mentor
others by example, a self-directed culture
can take hold quickly. When new devel-
opers are exposed to an effective self-
directed culture, they learn by watching
peers and then just do it. I have witnessed
this rapid behavior change. It is the lead-
ership and team culture that leads to agile
success, not some special set of individ-
ual skills.

Scenario 8
Agile Customer Deliverables
Scenarios 8 and 9 are admittedly exag-
gerations, but they are included to com-
municate issues commonly faced on
large defense projects trying to become
more agile.

When I use the term customer deliver-
ables, I mean contractually required doc-
umentation, reviews, and products (e.g.,
code).

The program manager on an agile pro-
ject asks one of his developers, “Can you
show me your documentation?” The
developer responds, “We’re agile, so I am
not focusing on my documentation.” The
program manager replies, “I thought you
were writing agile documentation?” The
developer replies, “I am, but you wouldn’t

Program

Manager

Hub Team N Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

C  

Customer

Community

Hub Team M Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

Configuration Management 

    Representative

 

Product Owner Team:

Hub Team Product Owners 

meet as team to coordinate

plan changes/clarify work

Team M

Task List

Team N

Customer 

Requirements

Focus

Refined 

Requirements/

Design/Task  Focus

Program

Manager

Hub Team N Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

Configuration Management 

    Representative

 

Customer

Community

Hub Team M Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

 

Product Owner Team:

Hub Team Product Owners 

meet as team to coordinate

plan changes/clarify work.

Team M

Task List

Team N

Customer 

Requirements

Focus

Refined 

Requirements/

Design/Task  Focus

Top Level

List

Task List

Figure 1: Large Agile Project Team Roles, Lists, and Interactions



Lessons Learned Using Agile Methods on Large Defense Contracts 

May 2006 www.stsc.hill.af.mil 29

want to look at it because it is full of
errors.”

Lessons Learned
Lesson 18: Agile deliverables must be
determined collaboratively with the
customer early. Cockburn tells us that
when it comes to determining what
should be in a document, the answer is
whatever the sponsor and the team
decide [6].

Too often, I see a lack of discussion
on customer deliverables early with the
customer on large agile projects. So we
should not be surprised when a customer
becomes upset when the early deliver-
ables do not meet expectations.

Agile customer deliverables should
not be confused with low quality deliver-
ables. As the exaggerated Scenario 8
points out, when we do not plan our
deliverables through collaboration with
the customer early – and allocate time
and tasks based on all the work required
– the deliverables will suffer and low
quality should not be a surprise.

Lesson 19: The major difference
between agile deliverables and tradi-
tional milestone deliverables is what
takes place before the milestone deliv-
ery. When using a traditional waterfall
model, it is not uncommon for customers
to see deliverables for the first time at a
major project milestone. With agile, the
milestone should become a non-event
because it is the culmination of an on
going, close working relationship
between customer and contractor. But do
not be tempted to delete the milestone
event. It is necessary on large agile projects
to have checkpoints to ensure collabora-
tion is really happening.

Scenario 9
Agile Test and Configuration
Management
A manager on an agile project says,
“With agile, we get more for less so let’s
plan on doing less testing.” Another
manager on the project replies, “Okay,
and let’s keep the testers and configura-
tion management people in a separate
building so they do not slow the agile
team down.”

Lessons Learned
Lesson 20: Agile does not always mean
less. For example, do not plan on less
testing. With agile, we do less of certain
activities because other activities com-
pensate. For example, we may do less for-
mal written detailed requirements partly
because the detailed test cases can com-

pensate [7]. With agile, we test continu-
ously to ensure previous iterations func-
tion properly along with new functionali-
ty. With agile, it is flawed thinking to
believe you can do less testing.

Lesson 21: Testers must be part of the
hub-teams. Agile developers must do
their own low-level testing due to the
tight coupling of the test-code-design
cycle. Distinct testers on large projects
writing higher level tests must work
closely with developers to ensure com-
plete test coverage. In our exaggerated
Scenario 9, the testers were placed in a
different building partly to keep from
slowing the agile team down and partly to
provide a level of test independence. On
large agile projects, you can still have an
independent group run tests, but this
does not mean they should be physically
separated from the team.

Lesson 22: Configuration management
must be integrated into the hub-teams.
Cockburn tells us that the configuration
management system is steadily cited by
teams as their most critical non-compiler
tool [6]. This is partly because of the sys-
tems support for individual check-in,
check-out, and continuous integration.
On large agile projects, I have found
another reason why configuration man-
agement must be integrated into each
hub-team.

Schwaber uses the term shippable [5] in
describing the quality that each iteration’s
product must have. With agile, we must
never demonstrate to the customer a
product that has not been fully tested and
is ready to ship, even if we do not plan on
deploying it today.

The reason is visibility – accurate
reporting. What we demonstrate must be
done. If it is not done, we do not report
it as done, and we do not demonstrate it.
This is an essential practice of agile
methods.

Done means ready to ship, which
means fully tested, documented, and
supportable. If it is not done, do not
pretend it is. Configuration management,
especially on large agile projects, can
provide an important checkpoint to keep
the team from caving in on their defini-
tion of done when external pressures
mount.

Conclusion 
Many of the lessons discussed in this
article are not new, and some may
appear to have little – if anything – to
do with agile. Examples include the fol-
lowing: distinguishing must-do require-

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.



30 CROSSTALK The Journal of Defense Software Engineering May 2006

Transforming: Business, Security,Warfighting

ments from nice-to-have; providing more
details for ambiguous requirements;
providing single focal points (product
owners) for work and work change
approval; coordinating schedule changes
across the project; developing and using
an integration plan; reporting earned
value relative to your baseline plan;
determining how collaborating teams
resolve conflict; planning the work and
scheduling the time for customer deliv-
erables; and controlling your baseline
releases through your configuration
management system.

While it may appear that these are not
agile issues, they are very real agile issues.
This is because today – in the name of
agility – we are witnessing a breakdown
of fundamental systems engineering.

Agile is not a short-cut around sys-
tems engineering. It is not about systems
engineers stepping back and letting
developers go. It is about systems engi-
neering stepping forward and working
more effectively with all project stake-
holders. It is about implementing more
effective ways to manage our work lists
and communicating the results more
effectively.

Ultimately, agile is about value
achieved through managed change. In

particular, make small changes early and
often so we do not get surprised by the
big ones later.u

References
1. McMahon, Paul. E. “Extending Agile

Methods: A Distributed Project and
Organizational Improvement Per-
spective.” CrossTalk May 2005
<www.stsc.hill.af.mil/crosstalk/2005/
05/0505mcmahon.html>.

2. Cockburn, Alistair. Agile Software
Development. Addison-Wesley, 2002:
215-218.

3. McMahon, Paul. E. Virtual Project
Management: Software Solutions for
Today and the Future. St. Lucie Press,
2001: Chapter 5.

4. Highsmith, Jim. Agile Project
Management. Addison-Wesley, 2004:
239-240.

5. Schwaber, Ken. Agile Project
Management with Scrum. Microsoft
Press, 2004.

6. Cockburn, Alistair. Crystal Clear: A
Human-Powered Methodology for
Small Teams. Addison-Wesley, 2004:
178, 37.

7. Ambler, Scott. Agile Modeling. John
Wiley & Sons, 2002: 217.

About the Author

Paul E. McMahon,
principal of PEM Sys-
tems, helps large and
small organizations as
they move toward in-
creased agility. He has

taught software engineering, conducted
workshops on engineering process and
management, published articles on agile
software development, and is author of
“Virtual Project Management: Software
Solutions for Today and the Future.”
McMahon is a frequent speaker at indus-
try conferences including the Systems
and Software Technology Conference,
and is a certified ScrumMaster. He has
more than 25 years of engineering and
management experience working for
companies including Hughes and
Lockheed Martin.

PEM Systems
118 Matthews ST
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org



BACKTALK

May 2006 www.stsc.hill.af.mil 31

If you are in the defense business and not heard of transfor-
mation, you are not in the defense business. Transformation is

everywhere. The Army is transforming, the Navy is transform-
ing, the Air Force has a flight plan for transformation and not to
be outdone, NATO has a transformation command.

Transformation is the new clarion call to change; this year’s
TQM, MBO, or BPI, times ten. Do you want funding? Start
transforming. Do you want to get promoted? Get involved in
transformation.

This issue of CrossTalk, coinciding with the Systems and
Software Technology Conference, focuses on transforming
business, security, and warfighting. We are transforming busi-
ness, systems, organizations, and the force. How long will it be
until the Jedi slogan transmogrifies to, “May the Force be
Transformed.”

So, what are we transforming into? Transformation for trans-
formation’s sake is not always a good idea. Michael Jackson trans-
formed and look how that turned out. My fear is the siren for
transformation is drowning out the end goal of the transforma-
tion. A key indicator shows up on a majority of the transforma-
tion Web sites and organization road maps, stating,
“Transformation is foremost a continuing process that does not
have an end point.” Modifying an old proverb; with no end point
any road will do.

Let us venture back to our early math classes and use trans-
formation matrices to illustrate a few points. For those who have
not been transforming matrices lately, below is a refresher on
matrix multiplication.

where,

C11 = A11 B11 + A12 B21 + A13 B31 C12 = A11 B12 + A12 B22 + A13 B32

C13 = A11 B13 + A12 B23 + A13 B33 C21 = A21 B11 + A22 B21 + A23 B31

C22 = A21 B12 + A22 B22 + A23 B32 C23 = A21 B13 + A22 B23 + A23 B33

C31 = A31 B11 + A32 B21 + A33 B31 C32 = A31 B12 + A32 B22 + A33 B32

C33 = A31 B13 + A32 B23 + A33 B33

THE IDENTITY MATRIX: Multiplying a matrix by the iden-
tity matrix (below) yields the original matrix or no transformation.

You go through the same steps, expend the same amount of
energy, and end up where you started. When transforming, do
not confuse motion with action.

THE SHEARING MATRIX: Multiplying a matrix by a shear-
ing matrix (below) slants the original matrix parallel to the x or y-
axis. A vertical slant (left) is similar to a bob.

A horizontal slant (right) is similar to a weave. Struggling organi-
zations tend to bob and weave around a productive transforma-
tion with their own slant on change.

THE ROTATION MATRIX: Multiplying a matrix by the rota-
tion matrix (below) rotates the original matrix by an angle θ
counterclockwise about the origin.

While an essential part of transformation, rotation has one dan-
ger. Used too often at the same angle, the rotation matrix spins
you in a circle, like a dog chasing its tail. Do you have organiza-
tions chasing their transformation tails?

THE REFLECTION MATRIX: Multiplying a matrix by the
reflection matrix (below) reflects a vector about a line (ux, uy) that
goes through the origin.

Distorted and subdued, reflections are imperfect apes of a
known solution. A good transformation should stretch, challenge
and revolutionize.

AFFINE MATRICES: Adding rows and columns to a matrix
allows one to mix different types of matrices.

Unfortunately, affine matrices can be used to puff up a trans-
formation effort, making it appear more complex and effec-
tive than it truly is. Known as the peacock effect, these cos-
metic add-ons drain resources with little return.

I agree with the late Vice Admiral Arthur K. Cebrowski,
“The overall objective of these [transformation] changes is
simply—sustained American competitive advantage in war-
fare.” However, I suggest we tone down the platitudes to
transformation itself and turn up the objectives of transfor-
mation, be it flexibility, speed, adaptability, etc.

Barney Fife, may he rest in peace, is capable of instigat-
ing transformation. People need directions. Leaders need to
lead. Warriors and their supply chain need goals. Once
achieved, they can set new goals but without them, I’m afraid
you will get more bobbing, weaving and tail chasing than
improvement.

— Gary A. Petersen
Shim Enterprise, Inc.

gary.petersen@shiminc.com

Transform This



CrossTalk / 309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:


	Front Cover
	Table of Contents
	From the Sponsor
	From the Publisher
	Transforming: Business, Security,Warfighting
	21st Century Processes for Acquiring 21st CenturySoftware-Intensive Systems of Systems
	Tackling the Cost Challengesof System of Systems
	Building Multilevel Secure Web Services-Based Components for the Global Information Grid
	Practical Performance-Based Earned Value
	Lessons Learned Using Agile Methods onLarge Defense Contracts

	Coming Events
	Web Sites
	Call for Articles
	Visit CrossTalk at the SSTC
	BackTalk
	Back Cover



